//header #ifdef LOCAL #include "cxx-prettyprint-master/prettyprint.hpp" #define debug(x) cout << x << endl #else #define debug(...) 42 #endif #pragma GCC optimize("Ofast") #include //types using namespace std; using ll = long long; using ul = unsigned long long; using ld = long double; typedef pair < ll , ll > Pl; typedef pair < int, int > Pi; typedef vector vl; typedef vector vi; template< typename T > using mat = vector< vector< T > >; template< int mod > struct modint { int x; modint() : x(0) {} modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} modint &operator+=(const modint &p) { if((x += p.x) >= mod) x -= mod; return *this; } modint &operator-=(const modint &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } modint &operator*=(const modint &p) { x = (int) (1LL * x * p.x % mod); return *this; } modint &operator/=(const modint &p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(-x); } modint operator+(const modint &p) const { return modint(*this) += p; } modint operator-(const modint &p) const { return modint(*this) -= p; } modint operator*(const modint &p) const { return modint(*this) *= p; } modint operator/(const modint &p) const { return modint(*this) /= p; } bool operator==(const modint &p) const { return x == p.x; } bool operator!=(const modint &p) const { return x != p.x; } modint inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return modint(u); } modint pow(int64_t n) const { modint ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const modint &p) { return os << p.x; } friend istream &operator>>(istream &is, modint &a) { int64_t t; is >> t; a = modint< mod >(t); return (is); } static int get_mod() { return mod; } }; //abreviations #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++) #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--) #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define SZ(x) ((int)(x).size()) #define pb(x) push_back(x) #define eb(x) emplace_back(x) #define mp make_pair #define print(x) cout << x << endl #define vsum(x) accumulate(x, 0LL) #define vmax(a) *max_element(all(a)) #define vmin(a) *min_element(all(a)) //functions ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { return a/gcd(a, b)*b;} templatebool chmax(T &a, const T &b) { if (abool chmin(T &a, const T &b) { if (b T mypow(T x, ll n) { T ret = 1; while(n > 0) { if(n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } ll modpow(ll x, ll n, const ll mod) { ll ret = 1; while(n > 0) { if(n & 1) (ret *= x); (x *= x); n >>= 1; x%=mod; ret%=mod; } return ret; } uint64_t my_rand(void) { static uint64_t x = 88172645463325252ULL; x = x ^ (x << 13); x = x ^ (x >> 7); return x = x ^ (x << 17); } //graph template template< typename T > struct edge { int src, to; T cost; edge(int to, T cost) : src(-1), to(to), cost(cost) {} edge(int src, int to, T cost) : src(src), to(to), cost(cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template< typename T > using Edges = vector< edge< T > >; template< typename T > using WeightedGraph = vector< Edges< T > >; using UnWeightedGraph = vector< vector< int > >; //constant #define INF 4001002003004005006LL #define inf 1000000005 #define mod 1000000007LL #define endl '\n' typedef modint mint; const long double eps = 0.001; const long double PI = 3.141592653589793; //library template< typename Monoid, typename OperatorMonoid = Monoid > struct LazySegmentTree { using F = function< Monoid(Monoid, Monoid) >; using G = function< Monoid(Monoid, OperatorMonoid) >; using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >; int sz, height; vector< Monoid > data; vector< OperatorMonoid > lazy; const F f; const G g; const H h; const Monoid M1; const OperatorMonoid OM0; LazySegmentTree(int n, const F f, const G g, const H h, const Monoid &M1, const OperatorMonoid OM0) : f(f), g(g), h(h), M1(M1), OM0(OM0) { sz = 1; height = 0; while(sz < n) sz <<= 1, height++; data.assign(2 * sz, M1); lazy.assign(2 * sz, OM0); } void set(int k, const Monoid &x) { data[k + sz] = x; } void build() { for(int k = sz - 1; k > 0; k--) { data[k] = f(data[2 * k + 0], data[2 * k + 1]); } } inline void propagate(int k) { if(lazy[k] != OM0) { lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]); lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]); data[k] = reflect(k); lazy[k] = OM0; } } inline Monoid reflect(int k) { return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]); } inline void recalc(int k) { while(k >>= 1) data[k] = f(reflect(2 * k + 0), reflect(2 * k + 1)); } inline void thrust(int k) { for(int i = height; i > 0; i--) propagate(k >> i); } void update(int a, int b, const OperatorMonoid &x) { thrust(a += sz); thrust(b += sz - 1); for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if(l & 1) lazy[l] = h(lazy[l], x), ++l; if(r & 1) --r, lazy[r] = h(lazy[r], x); } recalc(a); recalc(b); } Monoid query(int a, int b) { thrust(a += sz); thrust(b += sz - 1); Monoid L = M1, R = M1; for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if(l & 1) L = f(L, reflect(l++)); if(r & 1) R = f(reflect(--r), R); } return f(L, R); } Monoid operator[](const int &k) { return query(k, k + 1); } template< typename C > int find_subtree(int a, const C &check, Monoid &M, bool type) { while(a < sz) { propagate(a); Monoid nxt = type ? f(reflect(2 * a + type), M) : f(M, reflect(2 * a + type)); if(check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template< typename C > int find_first(int a, const C &check) { Monoid L = M1; if(a <= 0) { if(check(f(L, reflect(1)))) return find_subtree(1, check, L, false); return -1; } thrust(a + sz); int b = sz; for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if(a & 1) { Monoid nxt = f(L, reflect(a)); if(check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template< typename C > int find_last(int b, const C &check) { Monoid R = M1; if(b >= sz) { if(check(f(reflect(1), R))) return find_subtree(1, check, R, true); return -1; } thrust(b + sz - 1); int a = sz; for(b += sz; a < b; a >>= 1, b >>= 1) { if(b & 1) { Monoid nxt = f(reflect(--b), R); if(check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; ////condition 左から作用するイメージ //x*em = x //(x1・x2)*m = (x1*m)・(x2*m) ・ = +の時は注意 //(x1*m1)*m2 = x*(m1×2m) ////X:monoid, M:operator using X = ll; using M = ll; ////モノイドのマージ //auto fx = [](X x1, X x2){return min(x1, x2);};//min //auto fx = [](X x1, X x2){return max(x1, x2);};//max ////モノイドと作用素のマージ //auto fa = [](X x, M m){return m;};//replace //auto fa = [](X x, M m){return m+x;};//sum ////作用素のマージ //auto fm = [](M m1, M m2){return m2;};//replace //auto fm = [](M m1, M m2){return m1+m2;};//sum ////fp = m**n //auto fp = [](M m, long long n){ return m * n; };//sum //auto fp = [](M m, long long n){ return m; };//min or max ////example //LazySegTree seg(n, fx, fa, fm, fp, ex, em); ////range sum query using P = pair; ////モノイドのマージ 範囲を持たせる auto fx=[](P a,P b){return P(a.first+b.first,a.second+b.second);};//sum ////モノイドと作用素のマージ 範囲を持たせる auto fa=[](P a,M b){return P(a.second*b,a.second);};//replace //auto fa=[](P a,M b){return P(a.first+a.second*b,a.second);};//add ////作用素のマージ(上と同じ) auto fm = [](M m1, M m2){return m2;};//replace //auto fm = [](M m1, M m2){return m1+m2;};//add ////単位元 ex.second = 1 P ex = P(0, 0);//初期値はP(0, 1)にすること //LazySegmentTree seg(n, fx, fa, fm, fp, ex, em); int m = 20010; ll update(int r, int h, LazySegmentTree& seg){ int ok = m, ng = -1; while(ok-ng>1){ int mid = (ok+ng)/2; if(seg[mid].first>n; LazySegmentTree ul(m, fx, fa, fm, ex, -1), ur(m, fx, fa, fm, ex, -1), dl(m, fx, fa, fm, ex, -1), dr(m, fx, fa, fm, ex, -1); rep(i, m)ul.set(i, mp(0, 1)), ur.set(i, mp(0, 1)), dl.set(i, mp(0, 1)), dr.set(i, mp(0, 1)); ul.build();ur.build();dl.build();dr.build(); rep(i, n){ int a, b, c, d; cin>>a>>b>>c>>d; a = -a;b = -b; cout << update(c, b, ul)+update(a, b, ur)+update(c, d, dl)+update(a, d, dr) << endl; } } int main(){ cin.tie(0); ios::sync_with_stdio(0); cout << setprecision(20); solve(); }