#include using namespace std; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--) #define all(x) (x).begin(), (x).end() #define sz(x) int(x.size()) #define get_unique(x) x.erase(unique(all(x)), x.end()); typedef long long ll; typedef complex Complex; const int INF = 1e9; const ll MOD = 1e9 + 7; const ll LINF = 1e18; template bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template vector make_vec(size_t a) { return vector(a); } template auto make_vec(size_t a, Ts... ts) { return vector(ts...))>(a, make_vec(ts...)); } template ostream& operator<<(ostream& os, vector v) { for (int i = 0; i < sz(v); i++) { os << v[i]; if (i < sz(v) - 1) os << " "; } return os; } template vector> matmul(vector>& a, vector>& b) { int n = sz(a), ma = sz(a[0]), mb = sz(b), p = sz(b[0]); assert(ma == mb); int m = ma; vector> ret(n, vector(p)); for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { for (int k = 0; k < m; k++) { ret[i][j] += a[i][k] * b[k][j]; } } } return ret; } template vector> matpow(vector> mt, ll k) { int n = sz(mt); vector> ret(n); for (int i = 0; i < n; i++) { ret[i].resize(n); ret[i][i] = 1; } vector> now = mt; while (k) { if (k & 1) ret = matmul(ret, now); now = matmul(now, now); k /= 2; } return ret; } struct modint { ll x; modint(ll x = 0) : x((x % MOD + MOD) % MOD) { } ll value() const { return x; } modint operator-() const { return modint(-x); } modint& operator+=(const modint a) { if ((x += a.x) >= MOD) x -= MOD; return *this; } modint& operator-=(const modint a) { if ((x += MOD - a.x) >= MOD) x -= MOD; return *this; } modint& operator*=(const modint a) { (x *= a.x) %= MOD; return *this; } modint operator+(const modint a) const { modint res(*this); return res += a; } modint operator-(const modint a) const { modint res(*this); return res -= a; } modint operator*(const modint a) const { modint res(*this); return res *= a; } modint pow(ll t) const { if (t == 0) return 1; modint a = pow(t >> 1); a *= a; if (t % 2 == 1) a *= *this; return a; } modint inv() const { return pow(MOD - 2); } modint& operator/=(const modint a) { return (*this) *= a.inv(); } modint operator/(const modint a) const { modint res(*this); return res /= a; } }; ostream& operator<<(ostream& os, const modint& x) { os << x.value(); return os; } struct combination { vector fact, ifact; combination(int n) : fact(n + 1), ifact(n + 1) { assert(n < MOD); fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = fact[i - 1] * i; } ifact[n] = fact[n].inv(); for (int i = n; i >= 1; i--) { ifact[i - 1] = ifact[i] * i; } } modint operator()(int n, int k) { if (n < k || k < 0) return 0; return fact[n] * ifact[k] * ifact[n - k]; } modint h(int n, int k) { n += k - 1; if (k < 0 || k > n) return 0; return fact[n] * ifact[k] * ifact[n - k]; } } comb(2002002); int main() { ll n, m, k, p, q; cin >> n >> m >> k >> p >> q; vector b(n); rep(i, n) cin >> b[i]; modint x = modint(p) / q; modint y = modint(1) - x; vector> A = {{y, x}, {x, y}}; vector> B = {{modint(1)}, {modint(0)}}; vector> C = {{modint(0)}, {modint(1)}}; A = matpow(A, k); B = matmul(A, B); C = matmul(A, C); modint ans = 0; rep(i, n) { if (i < m) ans += B[0][0] * b[i]; else ans += C[0][0] * b[i]; } cout << ans << endl; }