#define CPP17 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CPP17 #include #endif // Yay!! #define endl codeforces // macros for iterator #define ALL(v) std::begin(v), std::end(v) #define ALLR(v) std::rbegin(v), std::rend(v) // alias using ll = std::int64_t; using ull = std::uint64_t; using pii = std::pair; using tii = std::tuple; using pll = std::pair; using tll = std::tuple; template using vec = std::vector; template using vvec = vec>; // variadic min/max template const T& var_min(const T &t) { return t; } template const T& var_max(const T &t) { return t; } template const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); } template const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); } // variadic chmin/chmax template void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); } template void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); } // multi demension array template struct multi_dim_array { using type = std::array::type, Head>; }; template struct multi_dim_array { using type = std::array; }; template using mdarray = typename multi_dim_array::type; #ifdef CPP17 // fill container template void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } } #endif // make multi dimension vector template vec make_v(ssize_t sz) { return vec(sz); } template auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v(std::forward(ts)...)); return vec(hs, v); } // init namespace init__ { struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io; } namespace graph { using Node = ll; using Weight = ll; using Edge = std::pair; template struct Graph : public vvec { using vvec::vvec; void add_edge(Node f, Node t, Weight w = 1) { (*this)[f].emplace_back(t, w); if (!Directed) (*this)[t].emplace_back(f, w); } Graph build_inv() const { Graph ret(this->size()); for (Node i = 0; i < this->size(); i++) { for (const Edge &e : (*this)[i]) { Node j; Weight w; std::tie(j, w) = e; if (!Directed && j < i) continue; ret.add_edge(j, i, w); } } return ret; } }; template class dst_iterator { Iterator ite; public: dst_iterator(Iterator ite) : ite(ite) { } bool operator ==(const dst_iterator &oth) const { return ite == oth.ite; } bool operator !=(const dst_iterator &oth) const { return !(*this == oth); } bool operator <(const dst_iterator &oth) const { return ite < oth.ite; } bool operator >(const dst_iterator &oth) const { return ite > oth.ite; } bool operator <=(const dst_iterator &oth) const { return ite <= oth.ite; } bool operator >=(const dst_iterator &oth) const { return ite >= oth.ite; } const Node& operator *() { return ite->first; } const Node& operator *() const { return ite->first; } dst_iterator operator ++() { ++ite; return ite; } }; class dst_iteration { using ite_type = vec::const_iterator; const vec &edges; public: dst_iteration(const vec &edges) : edges(edges) { } auto begin() const { return dst_iterator(edges.cbegin()); } auto end() const { return dst_iterator(edges.cend()); } }; class dst_reverse_iteration { using ite_type = vec::const_reverse_iterator; const vec &edges; public: dst_reverse_iteration(const vec &edges) : edges(edges) { } auto begin() const { return dst_iterator(edges.crbegin()); } auto end() const { return dst_iterator(edges.crend()); } }; dst_iteration dst(const vec &edges) { return dst_iteration(edges); } dst_reverse_iteration rdst(const vec &edges) { return dst_reverse_iteration(edges); } } namespace graph { template class StronglyConnectedComponents { const Graph &graph; Graph rgraph; vec label, scc_ord; void dfs1(ll cur, ll &l) { label[cur] = -2; for (const graph::Edge &e : graph[cur]) { ll nxt; std::tie(nxt, std::ignore) = e; if (label[nxt] != -1) continue; dfs1(nxt, l); } label[cur] = l++; } void write_label() { ll l = 0; for (ll i = 0; i < graph.size(); i++) if (label[i] == -1) dfs1(i, l); } void dfs2(ll cur, ll l, ll &idx, vec &result) { result[cur] = l; scc_ord[idx++] = cur; for (const graph::Edge &e : rgraph[cur]) { ll nxt; std::tie(nxt, std::ignore) = e; if (result[nxt] != -1) continue; dfs2(nxt, l, idx, result); } } vec build_scc() { ll l = 0; vec result(graph.size(), -1), ord(rgraph.size()); std::iota(ALL(ord), 0ll); std::sort(ALL(ord), [&](ll i, ll j) { return label[i] > label[j]; }); ll idx = 0; for (ll n : ord) if (result[n] == -1) dfs2(n, l++, idx, result); return result; } public: StronglyConnectedComponents(const Graph &graph) : graph(graph), label(graph.size(), -1), scc_ord(graph.size()) { rgraph = graph.build_inv(); } vec build() { vec result(graph.size(), -1); write_label(); return build_scc(); } std::pair<::graph::Graph, vec> build_scc_graph() { auto scc_label = build(); ::graph::Graph scc_graph(*std::max_element(ALL(scc_label)) + 1); for (ll from = 0; from < graph.size(); from++) for (auto &&e : graph[from]) { ll to; std::tie(to, std::ignore) = e; ll lf = scc_label[from], lt = scc_label[to]; if (lf != lt) scc_graph.add_edge(lf, lt); } return std::make_pair(std::move(scc_graph), std::move(scc_label)); } }; template using SCC = StronglyConnectedComponents; } int main() { ll n; std::cin >> n; vec sv(n), tv(n), uv(n); for (ll &e : sv) { std::cin >> e; e--; } for (ll &e : tv) { std::cin >> e; e--; } for (ll &e : uv) std::cin >> e; auto make_id = [&](ll r, ll c) { return r * n + c; }; graph::Graph g(2 * n * n); for (ll i = 0; i < n; i++) for (ll j = 0; j < n; j++) { ll r1 = sv[i], c1 = j; ll r2 = j, c2 = tv[i]; ll id1 = make_id(r1, c1); ll id2 = make_id(r2, c2); ll nid1 = id1 + n * n, nid2 = id2 + n * n; if (uv[i] == 0) { // not 0 or not 0 // 1 => 0 and 1 => 0 g.add_edge(id1, nid2); g.add_edge(id2, nid1); } else if (uv[i] == 1) { // not 1 or not 0 // 0 => 0 and 1 => 1 g.add_edge(nid1, nid2); g.add_edge(id2, id1); } else if (uv[i] == 2){ // not 0 or not 1 // 1 => 1 and 0 => 0 g.add_edge(id1, id2); g.add_edge(nid2, nid1); } else if (uv[i] == 3) { // not 1 or not 1 // 0 => 1 and 0 => 1 g.add_edge(nid1, id2); g.add_edge(nid2, id1); } } graph::SCC scc(g); auto label = scc.build(); auto ans = make_v(n, n); for (ll i = 0; i < n * n; i++) { if (label[i] == label[i + n * n]) { std::cout << -1 << "\n"; return 0; } ll r = i / n, c = i % n; if (label[i] > label[i + n * n]) ans[r][c] = 0; else ans[r][c] = 1; } for (auto &&v : ans) for (ll i = 0; i < n; i++) std::cout << v[i] << " \n"[i + 1 == n]; return 0; }