struct SCC {
    n: usize,
    graph: Vec<Vec<usize>>,
    rev_graph: Vec<Vec<usize>>,
    post_order: Vec<usize>,
    component: Vec<usize>,
}

impl SCC {
    fn new(n: usize) -> SCC {
        SCC {
            n,
            graph: vec![Vec::new(); n],
            rev_graph: vec![Vec::new(); n],
            component: vec![n; n],
            post_order: Vec::with_capacity(n),
        }
    }

    fn add_edge(&mut self, from: usize, to: usize) {
        self.graph[from].push(to);
        self.rev_graph[to].push(from);
    }

    fn dfs(&mut self, from: usize) {
        self.component[from] = self.n + 1;
        for to in self.graph[from].to_owned() {
            if self.component[to] == self.n {
                self.dfs(to);
            }
        }
        self.post_order.push(from);
    }
    
    fn rev_dfs(&mut self, from: usize, k: usize) {
        self.component[from] = k;
        for to in self.rev_graph[from].to_owned() {
            if self.component[to] > self.n {
                self.rev_dfs(to, k);
            }
        }
    }

    fn solve(&mut self) {
        for i in 0..self.n {
            if self.component[i] == self.n {
                self.dfs(i);
            }
        }

        let mut k: usize = 0;
        for i in (0..self.n).rev() {
            if self.component[self.post_order[i]] > self.n {
                self.rev_dfs(self.post_order[i], k);
                k += 1;
            }
        }
    }
}

struct TwoSAT {
    n: usize,
    scc: SCC,
}

impl TwoSAT {
    fn new(n: usize) -> TwoSAT {
        TwoSAT {
            n,
            scc: SCC::new(n * 2),
        }
    }

    fn add_closure(&mut self, x: usize, y: usize) {
        self.scc.add_edge((x + self.n) % (self.n * 2), y);
        self.scc.add_edge((y + self.n) % (self.n * 2), x);
    }

    fn solve(&mut self) -> Option<Vec<bool>> {
        self.scc.solve();

        let mut res = vec![false; self.n];
        for i in 0..self.n {
            if self.scc.component[i] == self.scc.component[i + self.n] {
                return None;
            }
            res[i] = self.scc.component[i] > self.scc.component[i + self.n];
        }

        Some(res)
    }
}

use std::io::{BufRead, Write};

fn main() {
    let stdin = std::io::stdin();
    let stdout = std::io::stdout();
    let mut reader = std::io::BufReader::new(stdin.lock());
    let mut writer = std::io::BufWriter::new(stdout.lock());

    let n: usize = {
        let mut buf = String::new();
        reader.read_line(&mut buf).unwrap();
        buf.trim_end().parse().unwrap()
    };

    let s: Vec<usize> = {
        let mut buf = String::new();
        reader.read_line(&mut buf).unwrap();
        let iter = buf.split_whitespace();
        iter.map(|x| x.parse::<usize>().unwrap() - 1).collect()
    };

    let t: Vec<usize> = {
        let mut buf = String::new();
        reader.read_line(&mut buf).unwrap();
        let iter = buf.split_whitespace();
        iter.map(|x| x.parse::<usize>().unwrap() - 1).collect()
    };

    let u: Vec<usize> = {
        let mut buf = String::new();
        reader.read_line(&mut buf).unwrap();
        let iter = buf.split_whitespace();
        iter.map(|x| x.parse().unwrap()).collect()
    };

    let m = n * n;
    let mut two_sat = TwoSAT::new(m);

    for i in 0..n {
        for j in 0..n {
            match u[i] {
                0 => two_sat.add_closure(s[i] * n + j, j * n + t[i]),
                1 => two_sat.add_closure(s[i] * n + j + m, j * n + t[i]),
                2 => two_sat.add_closure(s[i] * n + j, j * n + t[i] + m),
                _ => two_sat.add_closure(s[i] * n + j + m, j * n + t[i] + m),
            }
        }
    }

    let ans = two_sat.solve();
    let ans = match ans {
        Some(res) => res,
        None => {
            writeln!(writer, "-1").unwrap();
            return;    
        }
    };

    for (i, &value) in ans.iter().enumerate() {
        write!(writer, "{}", if value { 1 } else { 0 }).unwrap();
        write!(writer, "{}", if i % n < n - 1 { ' ' } else { '\n' }).unwrap();
    }
}