#![allow(unused_imports, non_snake_case)] #![allow(dead_code)] use crate::data_structure::segment_tree::SegTree; use crate::scanner::Scanner; fn main() { let mut scan = Scanner::new(); let n = scan.read::(); let ys = scan.readn::(n); let mut seg = SegTree::new(list ! ( 1i64 << 60 ; 10001 ), 1i64 << 60, std::cmp::min); seg.set(0, 0); for i in 0..n { let mut prev = SegTree::new(list ! ( 1i64 << 60 ; 10001 ), 1i64 << 60, std::cmp::min); swap!(prev, seg); for y in 0..=10000 { let m = prev.get(0..=y); seg.set(y, (y - ys[i]).abs() as i64 + m); } } println!("{}", seg.get(..)); } pub mod independent { pub mod integer { pub trait Int: std::ops::Add + std::ops::Sub + std::ops::Mul + std::ops::Div + std::ops::Rem + std::hash::Hash + PartialEq + Eq + PartialOrd + Ord + Copy { fn to_u8(&self) -> u8; fn to_u16(&self) -> u16; fn to_u32(&self) -> u32; fn to_u64(&self) -> u64; fn to_u128(&self) -> u128; fn to_i8(&self) -> i8; fn to_i16(&self) -> i16; fn to_i32(&self) -> i32; fn to_i64(&self) -> i64; fn to_i128(&self) -> i128; fn to_usize(&self) -> usize; fn to_isize(&self) -> isize; fn zero() -> Self; fn one() -> Self; } macro_rules ! impl_integer_functions { ( $ ( $ name : ident , $ tpe : ident ) ,* ) => { $ ( fn $ name ( & self ) -> $ tpe { * self as $ tpe } ) * } ; } macro_rules ! impl_integer { ( $ ( $ tpe : ident ) ,* ) => { $ ( impl Int for $ tpe { impl_integer_functions ! ( to_u8 , u8 , to_u16 , u16 , to_u32 , u32 , to_u64 , u64 , to_u128 , u128 , to_i8 , i8 , to_i16 , i16 , to_i32 , i32 , to_i64 , i64 , to_i128 , i128 , to_usize , usize , to_isize , isize ) ; fn zero ( ) -> Self { 0 } fn one ( ) -> Self { 1 } } ) * } ; } impl_integer!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize, isize); } } pub mod scanner { use crate::arraylist::List; use std::io::{stdin, BufReader, Bytes, Read, Stdin}; use std::str::FromStr; pub struct Scanner { buf: Bytes>, } impl Scanner { pub fn new() -> Scanner { Scanner { buf: BufReader::new(stdin()).bytes(), } } pub fn read_next(&mut self) -> Option { let token = self .buf .by_ref() .map(|c| c.unwrap() as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect::(); token.parse::().ok() } pub fn read(&mut self) -> T { self.read_next().unwrap() } pub fn readn(&mut self, n: i32) -> List { (0..n).map(|_| self.read::()).collect() } pub fn chars(&mut self) -> List { self.read::().chars().collect() } } } pub mod ext { pub mod range { use crate::independent::integer::Int; use std::cmp::{max, min}; use std::ops::{Bound, Range, RangeBounds, RangeInclusive}; pub trait RangeEx { fn width(&self) -> T; fn empty(&self) -> bool; fn contain_range(&self, inner: &Self) -> bool; fn separate_range(&self, other: &Self) -> bool; type ReturnRange; fn overlap(&self, other: &Self) -> Self::ReturnRange; } impl RangeEx for Range { fn width(&self) -> T { if self.empty() { T::zero() } else { self.end - self.start } } fn empty(&self) -> bool { !(self.start < self.end) } fn contain_range(&self, inner: &Self) -> bool { self.start <= inner.start && inner.end <= self.end } fn separate_range(&self, other: &Self) -> bool { self.end <= other.start || other.end <= self.start } type ReturnRange = Range; fn overlap(&self, other: &Self) -> Self::ReturnRange { let left = max(self.start, other.start); let right = min(self.end, other.end); left..right } } impl RangeEx for RangeInclusive { fn width(&self) -> T { if self.empty() { T::zero() } else { *self.end() - *self.start() + T::one() } } fn empty(&self) -> bool { !(self.start() <= self.end()) } fn contain_range(&self, inner: &Self) -> bool { self.start() <= inner.start() && inner.end() <= self.end() } fn separate_range(&self, other: &Self) -> bool { self.end() <= other.start() || other.end() <= self.start() } type ReturnRange = RangeInclusive; fn overlap(&self, other: &Self) -> Self::ReturnRange { let left = *max(self.start(), other.start()); let right = *min(self.end(), other.end()); left..=right } } pub trait IntRangeBounds: RangeBounds { #[doc = " inclusive"] fn lower_bound(&self, lower_bound: U) -> U { match self.start_bound() { Bound::Included(x) => max(lower_bound, *x), Bound::Excluded(x) => max(lower_bound, *x + U::one()), Bound::Unbounded => lower_bound, } } #[doc = " exclusive"] fn upper_bound(&self, upper_bound: U) -> U { match self.end_bound() { Bound::Included(x) => min(upper_bound, *x + U::one()), Bound::Excluded(x) => min(upper_bound, *x), Bound::Unbounded => upper_bound, } } fn to_harfopen(&self, lb: U, ub: U) -> Range { self.lower_bound(lb)..self.upper_bound(ub) } } impl IntRangeBounds for T where T: RangeBounds {} } } pub mod macros { #[macro_export] macro_rules ! for_ { ( $ init : stmt ; $ cond : expr ; $ incr : expr , $ body : block ) => { $ init while $ cond { $ body $ incr ; } } ; } #[macro_export] macro_rules! chmax { ( $ x : expr , $ y : expr ) => { if $x < $y { $x = $y; true } else { false } }; } #[macro_export] macro_rules! chmin { ( $ x : expr , $ y : expr ) => { if $x > $y { $x = $y; true } else { false } }; } #[macro_export] macro_rules ! min { ( $ a : expr $ ( , ) * ) => { { $ a } } ; ( $ a : expr , $ b : expr $ ( , ) * ) => { { std :: cmp :: min ( $ a , $ b ) } } ; ( $ a : expr , $ ( $ rest : expr ) ,+ $ ( , ) * ) => { { std :: cmp :: min ( $ a , min ! ( $ ( $ rest ) ,+ ) ) } } ; } #[macro_export] macro_rules ! max { ( $ a : expr $ ( , ) * ) => { { $ a } } ; ( $ a : expr , $ b : expr $ ( , ) * ) => { { std :: cmp :: max ( $ a , $ b ) } } ; ( $ a : expr , $ ( $ rest : expr ) ,+ $ ( , ) * ) => { { std :: cmp :: max ( $ a , max ! ( $ ( $ rest ) ,+ ) ) } } ; } #[macro_export] macro_rules ! assign { ( $ arr : ident $ ( [ $ a : expr ] ) + = $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , = , $ right , default ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + += $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , += , $ right , default ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + -= $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , -= , $ right , default ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + |= $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , |= , $ right , default ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + &= $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , &= , $ right , default ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + ^= $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , ^= , $ right , default ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + min $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , ^= , $ right , min ) ; } ; ( $ arr : ident $ ( [ $ a : expr ] ) + max $ right : expr ) => { assign ! ( $ arr , $ ( [ $ a ] ) + , ^= , $ right , max ) ; } ; ( $ arr : expr , [ $ head : expr ] , $ op : tt , $ right : expr , default ) => { let head = $ head ; if ( 0 ..$ arr . ilen ( ) ) . contains ( &$ head ) { let tmp = $ right ; $ arr [ head ] $ op tmp ; } } ; ( $ arr : expr , [ $ head : expr ] , $ op : tt , $ right : expr , min ) => { let head = $ head ; if ( 0 ..$ arr . ilen ( ) ) . contains ( &$ head ) { let tmp = $ right ; $ arr [ head ] = std :: cmp :: min ( $ arr [ head ] , tmp ) ; } } ; ( $ arr : expr , [ $ head : expr ] , $ op : tt , $ right : expr , max ) => { let head = $ head ; if ( 0 ..$ arr . ilen ( ) ) . contains ( &$ head ) { let tmp = $ right ; $ arr [ head ] = std :: cmp :: max ( $ arr [ head ] , tmp ) ; } } ; ( $ arr : expr , [ $ head : expr ] $ ( [ $ a : expr ] ) +, $ op : tt , $ right : expr , $ kind : ident ) => { let head = $ head ; if ( 0 ..$ arr . ilen ( ) ) . contains ( &$ head ) { assign ! ( $ arr [ head ] , $ ( [ $ a ] ) +, $ op , $ right , $ kind ) ; } } ; } #[macro_export] macro_rules! unwrap { ( $ arg : expr ) => {{ let tmp = $arg; if tmp.is_none() { return; } tmp.unwrap() }}; } #[macro_export] macro_rules! swap { ( $ a : expr , $ b : expr ) => { let tmp = $a; $a = $b; $b = tmp; }; } } pub mod data_structure { pub mod segment_tree { use crate::arraylist::List; use crate::ext::range::{IntRangeBounds, RangeEx}; use std::ops::{Range, RangeBounds}; pub struct SegTree<'a> { node: List, op: Box i64 + 'a>, zero: i64, n: i32, } impl<'a> SegTree<'a> { pub fn new(v: List, zero: i64, op: B) -> SegTree<'a> where B: Fn(i64, i64) -> i64 + 'a, { let size = v.ilen(); let mut n = 1i32; while n < size { n *= 2 } let mut node = List::init(zero, 2 * n - 1); for i in 0..size { node[i + n - 1] = v[i] } for i in (0..n - 1).rev() { node[i] = op(node[2 * i + 1], node[2 * i + 2]) } SegTree { node, op: Box::new(op), zero, n, } } pub fn set(&mut self, mut x: i32, value: i64) { x += self.n - 1; self.node[x] = value; while x > 0 { x = (x - 1) / 2; self.node[x] = (self.op)(self.node[2 * x + 1], self.node[2 * x + 2]); } } pub fn get1(&self, i: i32) -> i64 { self.getrec(i..i + 1, 0, 0..self.n) } pub fn get(&self, query: T) -> i64 where T: RangeBounds, { self.getrec(query.to_harfopen(0, self.n), 0, 0..self.n) } fn getrec(&self, query: Range, k: i32, range: Range) -> i64 { if query.separate_range(&range) { return self.zero; } if query.contain_range(&range) { return self.node[k]; } let vl = self.getrec( query.clone(), 2 * k + 1, range.start..(range.start + range.end) / 2, ); let vr = self.getrec( query.clone(), 2 * k + 2, (range.start + range.end) / 2..range.end, ); (self.op)(vl, vr) } } pub struct DualSegTree<'a> { node: List, op: Box i64 + 'a>, n: i32, } impl<'a> DualSegTree<'a> { pub fn new(v: List, zero: i64, op: B) -> DualSegTree<'a> where B: Fn(i64, i64) -> i64 + 'a, { let size = v.ilen(); let mut n = 1i32; while n < size { n *= 2 } let mut node = List::init(zero, 2 * n - 1); for i in 0..size { node[i + n - 1] = v[i] } for i in (0..n - 1).rev() { node[i] = op(node[2 * i + 1], node[2 * i + 2]) } DualSegTree { node, op: Box::new(op), n, } } pub fn get(&self, mut x: i32) -> i64 { x += self.n - 1; let mut ret = self.node[x]; while x > 0 { x = (x - 1) / 2; ret = (self.op)(ret, self.node[x]); } ret } pub fn set(&mut self, query: T, value: i64) where T: RangeBounds, { let n = self.n; self.setrec(query.to_harfopen(0, n), 0, 0..n, value); } fn setrec(&mut self, query: Range, k: i32, range: Range, value: i64) { if query.separate_range(&range) { return; } if query.contain_range(&range) { self.node[k] = (self.op)(self.node[k], value); return; } self.setrec( query.clone(), 2 * k + 1, range.start..(range.start + range.end) / 2, value, ); self.setrec( query.clone(), 2 * k + 2, (range.start + range.end) / 2..range.end, value, ); } } pub struct SegRangeAdd { node: List, lazy: List, n: i32, } impl SegRangeAdd { pub fn new(v: List) -> SegRangeAdd { let size = v.ilen(); let mut n = 1; while n < size { n *= 2 } let mut node = List::init(0, 2 * n - 1); let lazy = List::init(0, 2 * n - 1); for i in 0..size { node[i + n - 1] = v[i] } for i in (0..n - 1).rev() { node[i] = node[i * 2 + 1] + node[i * 2 + 2] } SegRangeAdd { node, lazy, n } } fn eval(&mut self, k: i32, range: Range) { if self.lazy[k] != 0 { self.node[k] += self.lazy[k]; if range.width() > 1 { self.lazy[2 * k + 1] += self.lazy[k] / 2; self.lazy[2 * k + 2] += self.lazy[k] / 2; } self.lazy[k] = 0; } } pub fn add(&mut self, query: T, x: i64) where T: RangeBounds, { let n = self.n; self.addrec(query.to_harfopen(0, n), x, 0, 0..n) } fn addrec(&mut self, query: Range, x: i64, k: i32, range: Range) { self.eval(k, range.clone()); if query.separate_range(&range) { return; } if query.contain_range(&range) { self.lazy[k] += range.width() as i64 * x; self.eval(k, range.clone()); } else { self.addrec( query.clone(), x, 2 * k + 1, range.start..(range.start + range.end) / 2, ); self.addrec( query.clone(), x, 2 * k + 2, (range.start + range.end) / 2..range.end, ); self.node[k] = self.node[2 * k + 1] + self.node[2 * k + 2]; } } pub fn sum(&mut self, query: T) -> i64 where T: RangeBounds, { let n = self.n; self.sumrec(query.to_harfopen(0, n), 0, 0..n) } fn sumrec(&mut self, query: Range, k: i32, range: Range) -> i64 { if query.separate_range(&range) { return 0; } self.eval(k, range.clone()); if query.contain_range(&range) { return self.node[k]; } let vl = self.sumrec( query.clone(), 2 * k + 1, range.start..(range.start + range.end) / 2, ); let vr = self.sumrec( query.clone(), 2 * k + 2, (range.start + range.end) / 2..range.end, ); vl + vr } } pub struct SegRangeUpdate<'a> { node: List, lazy: List, has_lazy: List, op: Box i64 + 'a>, zero: i64, n: i32, } impl<'a> SegRangeUpdate<'a> { pub fn new(v: List, zero: i64, op: B) -> SegRangeUpdate<'a> where B: Fn(i64, i64) -> i64 + 'a, { let size = v.ilen(); let mut n = 1i32; while n < size { n *= 2 } let mut node = List::init(zero, 2 * n - 1); let lazy = List::init(0, 2 * n - 1); let has_lazy = List::init(false, 2 * n - 1); for i in 0..size { node[i + n - 1] = v[i] } for i in (0..n - 1).rev() { node[i] = op(node[i * 2 + 1], node[i * 2 + 2]) } SegRangeUpdate { node, lazy, has_lazy, op: Box::new(op), zero, n, } } fn eval(&mut self, k: i32, range: Range) { if self.has_lazy[k] { self.node[k] = self.lazy[k]; if range.width() > 1 { self.lazy[2 * k + 1] = self.lazy[k]; self.lazy[2 * k + 2] = self.lazy[k]; self.has_lazy[2 * k + 1] = true; self.has_lazy[2 * k + 2] = true; } self.has_lazy[k] = false; } } pub fn set(&mut self, query: T, x: i64) where T: RangeBounds, { let n = self.n; self.setrec(query.to_harfopen(0, n), x, 0, 0..n) } fn setrec(&mut self, query: Range, x: i64, k: i32, range: Range) { self.eval(k, range.clone()); if query.separate_range(&range) { return; } if query.contain_range(&range) { self.lazy[k] = x; self.has_lazy[k] = true; self.eval(k, range.clone()); } else { self.setrec( query.clone(), x, 2 * k + 1, range.start..(range.start + range.end) / 2, ); self.setrec( query.clone(), x, 2 * k + 2, (range.start + range.end) / 2..range.end, ); self.node[k] = (self.op)(self.node[2 * k + 1], self.node[2 * k + 2]); } } pub fn get(&mut self, query: T) -> i64 where T: RangeBounds, { let n = self.n; self.getrec(query.to_harfopen(0, n), 0, 0..n) } fn getrec(&mut self, query: Range, k: i32, range: Range) -> i64 { if query.separate_range(&range) { return self.zero; } self.eval(k, range.clone()); if query.contain_range(&range) { return self.node[k]; } let vl = self.getrec( query.clone(), 2 * k + 1, range.start..(range.start + range.end) / 2, ); let vr = self.getrec( query.clone(), 2 * k + 2, (range.start + range.end) / 2..range.end, ); (self.op)(vl, vr) } } pub struct SegIndexTree<'a> { node: List<(i64, i32)>, zero: i64, op: Box (i64, i32) + 'a>, n: i32, } impl<'a> SegIndexTree<'a> { pub fn new(v: List, zero: i64, op: B) -> SegIndexTree<'a> where B: Fn((i64, i32), (i64, i32)) -> (i64, i32) + 'a, { let size = v.ilen(); let mut n = 1i32; while n < size { n *= 2 } let mut node = List::init((zero, 0), 2 * n - 1); for i in 0..size { node[i + n - 1] = (v[i], i) } for i in (0..n - 1).rev() { node[i] = op(node[2 * i + 1], node[2 * i + 2]) } SegIndexTree { node: node, zero: zero, op: Box::new(op), n: n, } } pub fn set(&mut self, mut x: i32, value: i64) { let y = x; x += self.n - 1; self.node[x] = (value, y); while x > 0 { x = (x - 1) / 2; self.node[x] = (self.op)(self.node[2 * x + 1], self.node[2 * x + 2]); } } pub fn get1(&self, i: i32) -> (i64, i32) { self.getrec(i..i + 1, 0, 0..self.n) } pub fn get(&self, query: T) -> (i64, i32) where T: RangeBounds, { self.getrec(query.to_harfopen(0, self.n), 0, 0..self.n) } fn getrec(&self, query: Range, k: i32, range: Range) -> (i64, i32) { if query.separate_range(&range) { return (self.zero, 0); } if query.contain_range(&range) { return self.node[k]; } let vl = self.getrec( query.clone(), 2 * k + 1, range.start..(range.start + range.end) / 2, ); let vr = self.getrec( query.clone(), 2 * k + 2, (range.start + range.end) / 2..range.end, ); (self.op)(vl, vr) } } } } pub mod arraylist { use crate::{ext::range::IntRangeBounds, independent::integer::Int}; use std::fmt::Formatter; use std::iter::FromIterator; use std::ops::{Index, IndexMut, RangeBounds}; use std::slice::Iter; #[derive(Clone, PartialEq, Eq)] pub struct List { pub vec: Vec, } impl List { #[inline] pub fn new() -> List { List { vec: vec![] } } #[inline] pub fn init(init: T, n: i32) -> List where T: Clone, { List { vec: vec![init; n as usize], } } #[inline] pub fn from_vec(vec: Vec) -> List { List { vec } } #[inline] pub fn ilen(&self) -> i32 { self.vec.len() as i32 } #[inline] pub fn iter(&self) -> Iter<'_, T> { self.vec.iter() } #[inline] pub fn push(&mut self, item: T) { self.vec.push(item); } #[inline] pub fn sort(&mut self) where T: Ord, { self.vec.sort(); } #[inline] pub fn reverse(&mut self) { self.vec.reverse(); } #[inline] pub fn sort_by(&mut self, compare: F) where F: FnMut(&T, &T) -> std::cmp::Ordering, { self.vec.sort_by(compare) } #[inline] pub fn sort_by_key(&mut self, compare: F) where F: FnMut(&T) -> K, K: Ord, { self.vec.sort_by_key(compare) } #[inline] pub fn first(&self) -> Option<&T> { self.vec.first() } #[inline] pub fn last(&self) -> Option<&T> { self.vec.last() } #[inline] pub fn pop(&mut self) -> Option { self.vec.pop() } #[inline] pub fn swap(&mut self, i: i32, j: i32) { self.vec.swap(i as usize, j as usize); } #[inline] pub fn append(&mut self, mut other: Self) { self.vec.append(&mut other.vec); } #[inline] pub fn extend(&mut self, other: impl Iterator) { self.vec.extend(other); } #[inline] pub fn mirror(&self) -> std::iter::Cloned> where T: Clone, { self.iter().cloned() } #[inline] pub fn map(&self, f: F) -> List where T: Clone, F: FnMut(T) -> B, { self.mirror().map(f).collect() } #[inline] pub fn filter

(&self, predicate: P) -> List where T: Clone, P: FnMut(&T) -> bool, { self.mirror().filter(predicate).collect() } #[inline] pub fn filter_map(&self, f: F) -> List where T: Clone, F: FnMut(T) -> Option, { self.mirror().filter_map(f).collect() } #[inline] pub fn any

(&self, predicate: P) -> bool where P: FnMut(&T) -> bool, { self.iter().any(predicate) } #[inline] pub fn all

(&self, predicate: P) -> bool where P: FnMut(&T) -> bool, { self.iter().all(predicate) } #[inline] pub fn sum(&self) -> T where T: Int, { self.iter().cloned().fold(T::zero(), |acc, x| acc + x) } #[inline] pub fn enumerate(&self) -> List<(i32, T)> where T: Clone, { self.mirror() .enumerate() .map(|p| (p.0 as i32, p.1)) .collect() } #[inline] pub fn find

(&self, mut predicate: P) -> Option<&T> where P: FnMut(&T) -> bool, { self.iter().find(|x| predicate(*x)) } #[inline] pub fn index_of

(&self, mut predicate: P) -> Option where P: FnMut(&T) -> bool, { self.iter() .enumerate() .find(|&(_i, x)| predicate(x)) .map(|p| p.0 as i32) } #[inline] pub fn to>(&self) -> B where T: Clone, { self.mirror().collect() } #[inline] pub fn min(&self) -> Option<&T> where T: Ord, { self.iter().min() } #[inline] pub fn max(&self) -> Option<&T> where T: Ord, { self.iter().max() } #[inline] pub fn argmin(&self) -> Option where T: Ord, { let item = self.iter().min()?; self.iter() .enumerate() .find(|p| p.1 == item) .map(|p| p.0 as i32) } #[inline] pub fn argmax(&self) -> Option where T: Ord, { let item = self.iter().max()?; self.iter() .enumerate() .find(|p| p.1 == item) .map(|p| p.0 as i32) } #[inline] pub fn part(&self, range: U) -> List where T: Clone, U: RangeBounds, { List::from_vec( self.vec[range.lower_bound(0) as usize..range.upper_bound(self.ilen()) as usize] .to_vec(), ) } #[inline] pub fn first_exn(&self) -> &T { self.first().unwrap() } #[inline] pub fn last_exn(&self) -> &T { self.last().unwrap() } #[inline] pub fn pop_exn(&mut self) -> T { self.pop().unwrap() } #[inline] pub fn min_exn(&self) -> &T where T: Ord, { self.min().unwrap() } #[inline] pub fn max_exn(&self) -> &T where T: Ord, { self.max().unwrap() } #[inline] pub fn argmin_exn(&self) -> i32 where T: Ord, { self.argmin().unwrap() } #[inline] pub fn argmax_exn(&self) -> i32 where T: Ord, { self.argmax().unwrap() } #[inline] pub fn find_exn

(&self, predicate: P) -> &T where P: FnMut(&T) -> bool, { self.find(predicate).unwrap() } #[inline] pub fn index_of_exn

(&self, predicate: P) -> i32 where P: FnMut(&T) -> bool, { self.index_of(predicate).unwrap() } } impl Index for List { type Output = T; #[inline] fn index(&self, index: i32) -> &Self::Output { if cfg!(debug_assertions) { self.vec.index(index as usize) } else { unsafe { self.vec.get_unchecked(index as usize) } } } } impl IndexMut for List { #[inline] fn index_mut(&mut self, index: i32) -> &mut Self::Output { if cfg!(debug_assertions) { self.vec.index_mut(index as usize) } else { unsafe { self.vec.get_unchecked_mut(index as usize) } } } } impl FromIterator for List { fn from_iter>(iter: U) -> Self { let mut vec = vec![]; for i in iter { vec.push(i); } List { vec } } } impl IntoIterator for List { type Item = T; type IntoIter = std::vec::IntoIter; fn into_iter(self) -> std::vec::IntoIter { self.vec.into_iter() } } impl<'a, T> IntoIterator for &'a List { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.vec.iter() } } impl std::fmt::Display for List { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!( f, "{}", self.iter() .map(|x| format!("{}", x)) .collect::>() .join(" ") ) } } impl std::fmt::Debug for List { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!( f, "[{}]", self.iter() .map(|x| format!("{:?}", x)) .collect::>() .join(", ") ) } } impl From> for List { fn from(vec: Vec) -> Self { Self::from_vec(vec) } } impl From<&[T]> for List { fn from(slice: &[T]) -> Self { slice.iter().cloned().collect() } } #[macro_export] macro_rules ! list { ( ) => { $ crate :: arraylist :: List :: new ( ) } ; ( $ v : expr ; $ a : expr ) => { $ crate :: arraylist :: List :: init ( $ v , $ a ) } ; ( $ v : expr ; $ a : expr ; $ ( $ rest : expr ) ;+ ) => { $ crate :: arraylist :: List :: init ( list ! ( $ v ; $ ( $ rest ) ;+ ) , $ a ) } ; } }