#include using namespace std; using lint = long long; const lint inf = 1LL << 60; const lint mod = 1000000007; template struct modint { lint v; modint() : v(0) {} modint(signed v) : v(v) {} modint(lint t) { v = t % mod; if (v < 0) v += mod; } modint pow(lint k) { modint res(1), tmp(v); while (k) { if (k & 1) res *= tmp; tmp *= tmp; k >>= 1; } return res; } static modint add_identity() { return modint(0); } static modint mul_identity() { return modint(1); } modint inv() { return pow(mod - 2); } modint &operator+=(modint a) { v += a.v; if (v >= mod) v -= mod; return *this; } modint &operator-=(modint a) { v += mod - a.v; if (v >= mod) v -= mod; return *this; } modint &operator*=(modint a) { v = v * a.v % mod; return *this; } modint &operator/=(modint a) { return (*this) *= a.inv(); } modint operator+(modint a) const { return modint(v) += a; }; modint operator-(modint a) const { return modint(v) -= a; }; modint operator*(modint a) const { return modint(v) *= a; }; modint operator/(modint a) const { return modint(v) /= a; }; modint operator-() const { return v ? modint(mod - v) : modint(v); } bool operator==(const modint a) const { return v == a.v; } bool operator!=(const modint a) const { return v != a.v; } bool operator<(const modint a) const { return v < a.v; } }; using mint = modint; ostream &operator<<(ostream &os, mint m) { return os << m.v; } template struct SquareMatrix { using arr = array; using mat = array; mat dat; SquareMatrix() { for (size_t i = 0; i < N; i++) for (size_t j = 0; j < N; j++) dat[i][j] = R::add_identity(); } SquareMatrix &operator=(const SquareMatrix &a) { dat = a.dat; return (*this); } bool operator==(const SquareMatrix &a) const { return dat == a.dat; } size_t size() const { return N; }; arr &operator[](size_t k) { return dat[k]; }; const arr &operator[](size_t k) const { return dat[k]; }; static SquareMatrix add_identity() { return SquareMatrix(); } static SquareMatrix mul_identity() { SquareMatrix res; for (size_t i = 0; i < N; i++) res[i][i] = R::mul_identity(); return res; } SquareMatrix operator*(const SquareMatrix &B) const { SquareMatrix res; for (size_t i = 0; i < N; i++) for (size_t j = 0; j < N; j++) for (size_t k = 0; k < N; k++) res[i][j] = res[i][j] + (dat[i][k] * B[k][j]); return res; } SquareMatrix operator+(const SquareMatrix &B) const { SquareMatrix res; for (size_t i = 0; i < N; i++) for (size_t j = 0; j < N; j++) res[i][j] = dat[i][j] + B[i][j]; return res; } SquareMatrix pow(long long n) const { SquareMatrix a = *this, res = mul_identity(); while (n) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } }; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); lint n; cin >> n; vector l(n + 1), r(n + 1); for (int i = 1; i <= n; ++i) { cin >> l[i]; } for (int i = 1; i <= n; ++i) { cin >> r[i]; } vector c(n + 1, 0); for (int i = 1; i <= n; ++i) { cin >> c[i]; } auto d = c; for (int i = n; i > 0; --i) { d[i] = (d[i] - d[i - 1] + 9) % 9; } vector dp(n + 1, 0); dp[0] = 1; SquareMatrix<2, mint> mat; mat[0][0] = 1; mat[0][1] = 1; mat[1][0] = 0; mat[1][1] = 10; bool zero = false; for (int i = 1; i <= n; ++i) { if (c[i] == 0) { dp[i] = 1; continue; } int add = d[i]; auto ml = mat.pow(l[i]); auto mr = mat.pow(r[i]); mint ls = ml[0][1]; mint rs = mr[0][1]; if (add == 0) rs += 1; dp[i] = dp[i - 1] * (rs - ls); } cout << dp[n] << "\n"; return 0; }