#include using namespace std; using lint = long long; constexpr lint mod = 1e9 + 7; #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountl((lint)(n)) #define fcout cout << fixed << setprecision(15) #define highest(x) (63 - __builtin_clzl(x)) #define rep(i, n) for(int i = 0; i < int(n); i++) #define rep2(i, l, r) for(int i = int(l); i < int(r); i++) #define repr(i, n) for(int i = int(n) - 1; i >= 0; i--) #define repr2(i, l, r) for(int i = int(r) - 1; i >= int(l); i--) #define SZ(x) int(x.size()) constexpr int inf9 = 1e9; constexpr lint inf18 = 1e18; inline void YES(bool condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; } inline void Yes(bool condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } inline void assertNO(bool condition){ if(!condition){ cout << "NO" << endl; exit(0); } } inline void assertNo(bool condition){ if(!condition){ cout << "No" << endl; exit(0); } } inline void assertm1(bool condition){ if(!condition){ cout << -1 << endl; exit(0); } } lint power(lint base, lint exponent, lint module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ lint root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ int y, x; }; position mv[4] = {{0, -1}, {1, 0}, {0, 1}, {-1, 0}}; double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } template string to_string(pair x){ return to_string(x.first) + "," + to_string(x.second); } string to_string(string x){ return x; } template string to_string(complex x){ return to_string(make_pair(x.real(), x.imag())); } template void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++) cout << (i == start ? "" : " ") << (*i); if(!ans.empty()) ans.pop_back(); cout << ans << endl; } template void cins(itr first, itr last){ for(auto i = first; i != last; i++){ cin >> (*i); } } template T gcd(T a, T b){ if(b) return gcd(b, a % b); else return a; } template T lcm(T a, T b){ return a / gcd(a, b) * b; } struct combination{ vector fact, inv; combination(int sz) : fact(sz + 1), inv(sz + 1){ fact[0] = 1; for(int i = 1; i <= sz; i++){ fact[i] = fact[i - 1] * i % mod; } inv[sz] = power(fact[sz], mod - 2, mod); for(int i = sz - 1; i >= 0; i--){ inv[i] = inv[i + 1] * (i + 1) % mod; } } lint P(int n, int r){ if(r < 0 || n < r) return 0; return (fact[n] * inv[n - r] % mod); } lint C(int p, int q){ if(q < 0 || p < q) return 0; return (fact[p] * inv[q] % mod * inv[p - q] % mod); } }; template bool next_sequence(itr first, itr last, int max_bound){ itr now = last; while(now != first){ now--; (*now)++; if((*now) == max_bound){ (*now) = 0; }else{ return true; } } return false; } template bool next_sequence2(itr first, itr last, itr2 first2, itr2 last2){ itr now = last; itr2 now2 = last2; while(now != first){ now--, now2--; (*now)++; if((*now) == (*now2)){ (*now) = 0; }else{ return true; } } return false; } template bool chmax(T &a, const T &b){ if(a < b){ a = b; return 1; } return 0; } template bool chmin(T &a, const T &b){ if(b < a){ a = b; return 1; } return 0; } inline int at(lint i, int j){ return (i >> j) & 1; } random_device rnd; bool is_in_board(lint y, lint x, lint H, lint W){ return (0 <= y && y < H && 0 <= x && x < W); } template< class Monoid, class OperatorMonoid = Monoid > struct RandomizedBinarySearchTree { using F = function< Monoid(Monoid, Monoid) >; using G = function< Monoid(Monoid, OperatorMonoid) >; using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >; using P = function< OperatorMonoid(OperatorMonoid, int) >; inline int xor128() { static int x = 123456789; static int y = 362436069; static int z = 521288629; static int w = 88675123; int t; t = x ^ (x << 11); x = y; y = z; z = w; return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); } struct Node { Node *l, *r; int cnt; Monoid key, sum; OperatorMonoid lazy; Node() {} Node(const Monoid &k, const OperatorMonoid &p) : cnt(1), key(k), sum(k), lazy(p), l(nullptr), r(nullptr) {} }; vector< Node > pool; int ptr; const Monoid M1; const OperatorMonoid OM0; const F f; const G g; const H h; const P p; RandomizedBinarySearchTree(int sz, const F &f, const Monoid &M1) : pool(sz), ptr(0), f(f), g(G()), h(H()), p(P()), M1(M1), OM0(OperatorMonoid()) {} RandomizedBinarySearchTree(int sz, const F &f, const G &g, const H &h, const P &p, const Monoid &M1, const OperatorMonoid &OM0) : pool(sz), ptr(0), f(f), g(g), h(h), p(p), M1(M1), OM0(OM0) {} inline Node *alloc(const Monoid &key) { return &(pool[ptr++] = Node(key, OM0)); } virtual Node *clone(Node *t) { return t; } inline int count(const Node *t) { return t ? t->cnt : 0; } inline Monoid sum(const Node *t) { return t ? t->sum : M1; } inline Node *update(Node *t) { t->cnt = count(t->l) + count(t->r) + 1; t->sum = f(f(sum(t->l), sum(t->r)), t->key); return t; } Node *propagete(Node *t) { t = clone(t); if(t->lazy != OM0) { t->key = g(t->key, t->lazy); if(t->l) { t->l = clone(t->l); t->l->lazy = h(t->l->lazy, t->lazy); t->l->sum = f(t->l->sum, p(t->lazy, count(t->l))); } if(t->r) { t->r = clone(t->r); t->r->lazy = h(t->r->lazy, t->lazy); t->r->sum = f(t->r->sum, p(t->lazy, count(t->r))); } t->lazy = OM0; } return update(t); } Node *merge(Node *l, Node *r) { if(!l || !r) return l ? l : r; if(xor128() % (l->cnt + r->cnt) < l->cnt) { l = propagete(l); l->r = merge(l->r, r); return update(l); } else { r = propagete(r); r->l = merge(l, r->l); return update(r); } } pair< Node *, Node * > split(Node *t, int k) { if(!t) return {t, t}; t = propagete(t); if(k <= count(t->l)) { auto s = split(t->l, k); t->l = s.second; return {s.first, update(t)}; } else { auto s = split(t->r, k - count(t->l) - 1); t->r = s.first; return {update(t), s.second}; } } Node *build(int l, int r, const vector< Monoid > &v) { if(l + 1 >= r) return alloc(v[l]); return merge(build(l, (l + r) >> 1, v), build((l + r) >> 1, r, v)); } Node *build(const vector< Monoid > &v) { ptr = 0; return build(0, (int) v.size(), v); } void dump(Node *r, typename vector< Monoid >::iterator &it) { if(!r) return; r = propagete(r); dump(r->l, it); *it = r->key; dump(r->r, ++it); } vector< Monoid > dump(Node *r) { vector< Monoid > v((size_t) count(r)); auto it = begin(v); dump(r, it); return v; } string to_string(Node *r) { auto s = dump(r); string ret; for(int i = 0; i < s.size(); i++) ret += ", "; return (ret); } void insert(Node *&t, int k, const Monoid &v) { auto x = split(t, k); t = merge(merge(x.first, alloc(v)), x.second); } void erase(Node *&t, int k) { auto x = split(t, k); t = merge(x.first, split(x.second, 1).second); } Monoid query(Node *&t, int a, int b) { auto x = split(t, a); auto y = split(x.second, b - a); auto ret = sum(y.first); t = merge(x.first, merge(y.first, y.second)); return ret; } void set_propagate(Node *&t, int a, int b, const OperatorMonoid &p) { auto x = split(t, a); auto y = split(x.second, b - a); y.first->lazy = h(y.first->lazy, p); t = merge(x.first, merge(propagete(y.first), y.second)); } void set_element(Node *&t, int k, const Monoid &x) { t = propagete(t); if(k < count(t->l)) set_element(t->l, k, x); else if(k == count(t->l)) t->key = t->sum = x; else set_element(t->r, k - count(t->l) - 1, x); t = update(t); } int size(Node *t) { return count(t); } bool empty(Node *t) { return !t; } Node *makeset() { return (nullptr); } }; template< class T > struct OrderedMultiSet : RandomizedBinarySearchTree< T > { using RBST = RandomizedBinarySearchTree< T >; using Node = typename RBST::Node; OrderedMultiSet(int sz) : RBST(sz, [&](T x, T y) { return x; }, T()) {} T kth_element(Node *t, int k) { if(k < RBST::count(t->l)) return kth_element(t->l, k); if(k == RBST::count(t->l)) return t->key; return kth_element(t->r, k - RBST::count(t->l) - 1); } virtual void insert_key(Node *&t, const T &x) { RBST::insert(t, lower_bound(t, x), x); } void erase_key(Node *&t, const T &x) { if(!count(t, x)) return; RBST::erase(t, lower_bound(t, x)); } int count(Node *t, const T &x) { return upper_bound(t, x) - lower_bound(t, x); } int lower_bound(Node *t, const T &x) { if(!t) return 0; if(x <= t->key) return lower_bound(t->l, x); return lower_bound(t->r, x) + RBST::count(t->l) + 1; } int upper_bound(Node *t, const T &x) { if(!t) return 0; if(x < t->key) return upper_bound(t->l, x); return upper_bound(t->r, x) + RBST::count(t->l) + 1; } }; template< class T > struct OrderedSet : OrderedMultiSet< T > { using SET = OrderedMultiSet< T >; using RBST = typename SET::RBST; using Node = typename RBST::Node; OrderedSet(int sz) : OrderedMultiSet< T >(sz) {} void insert_key(Node *&t, const T &x) override { if(SET::count(t, x)) return; RBST::insert(t, SET::lower_bound(t, x), x); } }; int main(){ int N, K; cin >> N >> K; if(N * (N - 1) < K){ cout << "No" << endl; return 0; } if(N == 1){ cout << "Yes\n0" << endl; return 0; } if(N == 2 && K == 1){ cout << "Yes\n3 2\n0 1" << endl; return 0; } int inversion = (K + 1) / 2; OrderedSet inversion_set(N); auto root = inversion_set.makeset(); rep(i, N){ inversion_set.insert_key(root, i); } vector inversed_array(N); rep(i, N){ int inv_cnt = min(N - i - 1, inversion); int num = inversion_set.kth_element(root, inv_cnt); inversed_array[num] = i; inversion_set.erase_key(root, num); inversion -= inv_cnt; } int zero_pos = int(find(all(inversed_array), 0) - inversed_array.begin()); int ans[N][N]; rep(i, N){ rep(j, N){ ans[i][j] = i + j; } ans[i][N - inversed_array[i] - 1] = 1e6; } if(K % 2){ swap(ans[zero_pos][0], ans[zero_pos][1]); } cout << "Yes" << endl; rep(i, N){ array_output(ans[i], ans[i] + N); } }