#include #define rep(i, a) for (int i = (int)0; i < (int)a; ++i) #define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i) #define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i) #define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() using ll = long long; constexpr ll mod = 1e9 + 7; constexpr ll INF = 1LL << 60; template inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } ll gcd(ll n, ll m) { ll tmp; while (m != 0) { tmp = n % m; n = m; m = tmp; } return n; } ll lcm(ll n, ll m) { return abs(n) / gcd(n, m) * abs(m); //gl=xy } using namespace std; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; template struct LCA{ const int LOG_N; vector depth;//根からの深さ vector> g; vector> dp;//dp[i][j]:2^i回たどって到達する頂点 bool flag; LCA(vector> &g):g(g),depth(g.size()),LOG_N(log2(g.size())+1){ dp.assign(LOG_N, vector(g.size(), -1)); flag = false; } void dfs(int v,int p,int d){ dp[0][v] = p; depth[v] = d; for(auto to:g[v]){ if(to!=p){ dfs(to, v, d + 1); } } } void init(int root=0){ flag = true; dfs(root, -1, 0); for (int k = 0; k + 1 < LOG_N;++k){ for (int i = 0; i < dp[0].size();++i){ if(dp[k][i]==-1){ dp[k + 1][i] = -1; } else{ dp[k + 1][i] = dp[k][dp[k][i]]; } } } } int query(int u,int v){ assert(flag); if (depth[u] > depth[v]) { swap(u, v); } for (int i = LOG_N - 1; i >= 0;--i){ if(((depth[v]-depth[u])>>i)&1) v = dp[i][v];//uとvを同じ高さにする } if(u==v) return u; for (int i = LOG_N - 1; i >= 0;--i){ if(dp[i][u]!=dp[i][v]){//uとvが衝突するまでuとvを登らせる u = dp[i][u]; v = dp[i][v]; } } return dp[0][u]; } }; void solve() { int d,l,r,k; cin>>d>>l>>r>>k; int d_l=(int)log2(l),d_r=(int)log2(r); int d_lca=(d_l+d_r-k)/2; if(d_l+d_r-2*d_lca!=k){ cout<<0<<"\n"; return; } modint ans=0,x=2,y=2,z=2; ans+=x.pow(d_lca)*y.pow(d_r-d_lca)*z.pow(d_l-d_lca-1); vectorcnt(d); cnt[d_l]++;cnt[d_r]++; Combinationc((1<