import std.stdio, std.algorithm, std.conv, std.array, std.string, std.math, std.typecons, std.numeric, std.container; long P = 10^^9+7; long[10^^5+50] F, RF; long pow(long x, long n) { long y = 1; while (n) { if (n%2 == 1) y = (y * x) % P; x = x^^2 % P; n /= 2; } return y; } long inv(long x) { return pow(x, P-2); } void init() { F[0] = F[1] = 1; foreach (i, ref x; F[2..$]) x = (F[i+1] * (i+2)) % P; { RF[$-1] = 1; auto x = F[$-1]; auto k = P-2; while (k) { if (k%2 == 1) RF[$-1] = (RF[$-1] * x) % P; x = x^^2 % P; k /= 2; } } foreach_reverse(i, ref x; RF[0..$-1]) x = (RF[i+1] * (i+1)) % P; } long comb(N)(N n, N k) { if (k > n) return 0; auto n_b = F[n]; // n! auto nk_b = RF[n-k]; // 1 / (n-k)! auto k_b = RF[k]; // 1 / k! auto nk_b_k_b = (nk_b * k_b) % P; // 1 / (n-k)!k! return (n_b * nk_b_k_b) % P; // n! / (n-k)!k! } long perm(N)(N n, N k) { if (k > n) return 0; auto n_b = F[n]; auto n_k_b = RF[n-k]; return (n_b * n_k_b) % P; } void main() { init(); auto nm = readln.split.to!(long[]); auto N = nm[0]; auto M = nm[1]; if (M > N) { writeln(0); return; } long r; foreach (e; 0..M) { (r += comb(M, e) * pow(M-e, N) % P * (-1)^^e + P) %= P; } writeln(r); }