#include using ll = long long; using uint = unsigned int; using ull = unsigned long long; using ld = long double; template using max_heap = std::priority_queue; template using min_heap = std::priority_queue, std::greater>; constexpr int popcount(const ull v) { return v ? __builtin_popcountll(v) : 0; } constexpr int log2p1(const ull v) { return v ? 64 - __builtin_clzll(v) : 0; } constexpr int lsbp1(const ull v) { return __builtin_ffsll(v); } constexpr int clog(const ull v) { return v ? log2p1(v - 1) : 0; } constexpr ull ceil2(const ull v) { return 1ULL << clog(v); } constexpr ull floor2(const ull v) { return v ? (1ULL << (log2p1(v) - 1)) : 0ULL; } constexpr bool btest(const ull mask, const int ind) { return (mask >> ind) & 1ULL; } template void bset(T& mask, const int ind) { mask |= ((T)1 << ind); } template void breset(T& mask, const int ind) { mask &= ~((T)1 << ind); } template void bflip(T& mask, const int ind) { mask ^= ((T)1 << ind); } template void bset(T& mask, const int ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); } template bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); } template bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); } template constexpr T inf_v = std::numeric_limits::max() / 4; template constexpr Real pi_v = Real{3.141592653589793238462643383279502884}; constexpr ull TEN(const int n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; } template struct fix : F { fix(F&& f) : F{std::forward(f)} {} template auto operator()(Args&&... args) const { return F::operator()(*this, std::forward(args)...); } }; class printer { public: printer(std::ostream& os_ = std::cout) : os{os_} {} template int operator()(const T& v) { return os << v, 0; } template int operator()(const std::vector& vs) { for (int i = 0; i < (int)vs.size(); i++) { os << (i ? " " : ""), this->operator()(vs[i]); } return 0; } template int operator()(const std::vector>& vss) { for (int i = 0; i < (int)vss.size(); i++) { os << (0 <= i or i + 1 < (int)vss.size() ? "\n" : ""), this->operator()(vss[i]); } return 0; } template int operator()(const T& v, const Args&... args) { return this->operator()(v), os << ' ', this->operator()(args...), 0; } template int ln(const Args&... args) { return this->operator()(args...), os << '\n', 0; } template int el(const Args&... args) { return this->operator()(args...), os << std::endl, 0; } template int fmt(const std::string& s, const Args&... args) { return rec(s, 0, args...); } private: int rec(const std::string& s, int index) { return os << s.substr(index, s.size()), 0; } template int rec(const std::string& s, int index, const T& v, const Args&... args) { return index == s.size() ? 0 : s[index] == '%' ? (this->operator()(v), rec(s, index + 1, args...)) : (os << s[index], rec(s, index + 1, v, args...)); } std::ostream& os; }; printer out; template std::vector generated(const int n, F f) { std::vector ans(n); return std::generate(ans.begin(), ans.end(), f), ans; } std::vector ioted(const int n, const int offset = 0) { std::vector ans(n); return std::iota(ans.begin(), ans.end(), offset), ans; } template Vs reversed(const Vs& vs) { auto ans = vs; return std::reverse(ans.begin(), ans.end()), ans; } template> std::vector sorted(const std::vector& vs, F comp = F{}) { auto ans = vs; return std::sort(ans.begin(), ans.end(), comp), ans; } template std::vector sorted_iota(const int n, F comp = F{}, const int offset = 0) { return sorted(ioted(n, offset), comp); } class scanner { public: scanner(std::istream& is_ = std::cin) : is{is_} { is.tie(nullptr), std::ios::sync_with_stdio(false); } template T val() { static T v; return is >> v, v; } template T val(const T offset) { return val() - offset; } template std::vector vec(const int n) { return generated(n, [&] { return val(); }); } template std::vector vec(const int n, const T offset) { return generated(n, [&] { return val(offset); }); } template std::vector> vvec(const int n0, const int n1) { return generated>(n0, [&] { return vec(n1); }); } template std::vector> vvec(const int n0, const int n1, const T offset) { return generated>(n0, [&] { return vec(n1, offset); }); } template auto tup() { return std::tuple...>{val()...}; } template auto tup(const Args&... offsets) { return std::tuple...>{val(offsets)...}; } private: std::istream& is; }; scanner in; # define SHOW(...) static_cast(0) template auto make_v(int const (&szs)[n], const T x = T{}) { if constexpr (i == n) { return x; } else { return std::vector(szs[i], make_v(szs, x)); } } template struct edge { using cost_type = T; int u, v; T c; edge(const int u_, const int v_) : u{u_}, v{v_}, c{1} {} edge(const int u_, const int v_, const T& c_) : u{u_}, v{v_}, c{c_} {} operator int() const { return v; } int from() const { return u; } int to() const { return v; } T cost() const { return c; } friend std::ostream& operator<<(std::ostream& os, const edge& e) { return os << e.u << "->" << e.v << ":" << e.c; } }; template class base_graph { public: base_graph(const int n) : sz{n}, es(n), res(n) {} void add_edge(const int u, const int v, const bool bi = false) { es[u].emplace_back(u, v), res[v].emplace_back(v, u); if (bi) { es[v].emplace_back(v, u), res[u].emplace_back(u, v); } } template void add_edge(const int u, const int v, const Cost& c, const bool bi = false) { es[u].emplace_back(u, v, c), res[v].emplace_back(v, u, c); if (bi) { es[v].emplace_back(v, u, c), res[u].emplace_back(u, v, c); } } std::vector& operator[](const int u) { return es[u]; } const std::vector& operator[](const int u) const { return es[u]; } std::vector& from(const int u) { return es[u]; } const std::vector& from(const int u) const { return es[u]; } std::vector& to(const int v) { return res[v]; } const std::vector& to(const int v) const { return res[v]; } int size() const { return sz; } friend std::ostream& operator<<(std::ostream& os, const base_graph& g) { for (int i = 0; i < g.sz; i++) { for (const auto& e : g.es[i]) { os << e << '\n'; } } return os; } private: int sz; std::vector> es, res; }; template using base_tree = base_graph; using graph = base_graph>; using tree = base_graph>; template using cost_graph = base_graph>; template using cost_tree = base_graph>; template std::vector dijkstra(const base_graph& g, const int s) { using T = typename Edge::cost_type; std::vector d(g.size(), inf_v); using P = std::pair; std::priority_queue, std::greater

> q; d[s] = 0, q.push({0, s}); while (not q.empty()) { const T cost = q.top().first; const int v = q.top().second; q.pop(); if (d[v] < cost) { continue; } for (const auto& e : g[v]) { const auto c = e.cost(); const int to = e.to(); if (d[to] <= d[v] + c) { continue; } d[to] = d[v] + c, q.push({d[to], to}); } } return d; } int main() { const auto [N, K] = in.tup(); const auto as = in.vec(N); const auto bs = in.vec(N); cost_graph g(2 * N); for (int i = 0; i < N; i++) { g.add_edge(i, i + N, as[i]); } for (int i = 0; i + 1 < N; i++) { g.add_edge(i + N, i + 1, bs[i + 1]); } for (int i = 0; i + 2 < N; i++) { g.add_edge(i + N, i + 2, bs[i + 2] + K); } const auto ts = dijkstra(g, 0); ll ans = 0; for (int i = 0; i < N; i++) { chmax(ans, ts[i]); } out.ln(ans); return 0; }