#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; int mod = MOD; struct ModInt { unsigned val; ModInt(): val(0) {} ModInt(ll x) : val(x >= 0 ? x % mod : x % mod + mod) {} ModInt pow(ll exponent) const { ModInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } ModInt &operator+=(const ModInt &x) { if((val += x.val) >= mod) val -= mod; return *this; } ModInt &operator-=(const ModInt &x) { if((val += mod - x.val) >= mod) val -= mod; return *this; } ModInt &operator*=(const ModInt &x) { val = static_cast(val) * x.val % mod; return *this; } ModInt &operator/=(const ModInt &x) { // assert(__gcd(static_cast(x.val), mod) == 1); unsigned a = x.val, b = mod; int u = 1, v = 0; while (b) { unsigned tmp = a / b; swap(a -= tmp * b, b); swap(u -= tmp * v, v); } return *this *= u; } bool operator==(const ModInt &x) const { return val == x.val; } bool operator!=(const ModInt &x) const { return val != x.val; } bool operator<(const ModInt &x) const { return val < x.val; } bool operator<=(const ModInt &x) const { return val <= x.val; } bool operator>(const ModInt &x) const { return val > x.val; } bool operator>=(const ModInt &x) const { return val >= x.val; } ModInt &operator++() { if (++val == mod) val = 0; return *this; } ModInt operator++(int) { ModInt res = *this; ++*this; return res; } ModInt &operator--() { val = (val == 0 ? mod : val) - 1; return *this; } ModInt operator--(int) { ModInt res = *this; --*this; return res; } ModInt operator+() const { return *this; } ModInt operator-() const { return ModInt(val ? mod - val : 0); } ModInt operator+(const ModInt &x) const { return ModInt(*this) += x; } ModInt operator-(const ModInt &x) const { return ModInt(*this) -= x; } ModInt operator*(const ModInt &x) const { return ModInt(*this) *= x; } ModInt operator/(const ModInt &x) const { return ModInt(*this) /= x; } friend ostream &operator<<(ostream &os, const ModInt &x) { return os << x.val; } friend istream &operator>>(istream &is, ModInt &x) { ll val; is >> val; x = ModInt(val); return is; } }; ModInt abs(const ModInt &x) { return x; } struct Combinatorics { int val; // "val!" and "mod" must be disjoint. vector fact, fact_inv, inv; Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) { fact[0] = 1; FOR(i, 1, val + 1) fact[i] = fact[i - 1] * i; fact_inv[val] = ModInt(1) / fact[val]; for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; FOR(i, 1, val + 1) inv[i] = fact[i - 1] * fact_inv[i]; } ModInt nCk(int n, int k) const { if (n < 0 || n < k || k < 0) return ModInt(0); // assert(n <= val && k <= val); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) const { if (n < 0 || n < k || k < 0) return ModInt(0); // assert(n <= val); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) const { if (n < 0 || k < 0) return ModInt(0); return k == 0 ? ModInt(1) : nCk(n + k - 1, k); } }; template struct Matrix { vector> dat; Matrix(int m, int n, T val = 0) : dat(m, vector(n, val)) {} int height() const { return dat.size(); } int width() const { return dat.front().size(); } Matrix pow(ll exponent) const { int n = height(); Matrix tmp = *this, res(n, n, 0); REP(i, n) res[i][i] = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } inline const vector &operator[](const int idx) const { return dat[idx]; } inline vector &operator[](const int idx) { return dat[idx]; } Matrix &operator=(const Matrix &x) { int m = x.height(), n = x.width(); dat.resize(m, vector(n)); REP(i, m) REP(j, n) dat[i][j] = x[i][j]; return *this; } Matrix &operator+=(const Matrix &x) { int m = height(), n = width(); REP(i, m) REP(j, n) dat[i][j] += x[i][j]; return *this; } Matrix &operator-=(const Matrix &x) { int m = height(), n = width(); REP(i, m) REP(j, n) dat[i][j] -= x[i][j]; return *this; } Matrix &operator*=(const Matrix &x) { int m = height(), n = x.width(), l = width(); vector> res(m, vector(n, 0)); REP(i, m) REP(j, n) { REP(k, l) res[i][j] += dat[i][k] * x[k][j]; } swap(dat, res); return *this; } Matrix operator+(const Matrix &x) const { return Matrix(*this) += x; } Matrix operator-(const Matrix &x) const { return Matrix(*this) -= x; } Matrix operator*(const Matrix &x) const { return Matrix(*this) *= x; } }; int main() { int k, m, n; cin >> k >> m >> n; Matrix a(k * k, k * k), v(k * k, 1); while (m--) { int p, q, r; cin >> p >> q >> r; --p; --q; --r; a[q * k + r][p * k + q] = 1; } // REP(i, k * k) { // REP(j, k * k) cout << a[i][j]; // cout << '\n'; // } REP(j, k) v[j][0] = 1; v = a.pow(n - 2) * v; ModInt ans = 0; REP(j, k) ans += v[j * k][0]; cout << ans << '\n'; return 0; }