#include #define rep(i,n) for (int i = 0; i < (n); i ++) using namespace std; using ll = long long; using PL = pair; using P = pair; constexpr int INF = 1000000000; constexpr long long HINF = 1000000000000000; constexpr long long MOD = 1000000007;// = 998244353; constexpr double EPS = 1e-4; constexpr double PI = 3.14159265358979; const int tyou[7] = {0,2,4,5,7,9,11}; template struct ModInt { long long x; ModInt(long long x = 0) :x((x%Modulus + Modulus)%Modulus) {} constexpr ModInt &operator+=(const ModInt a) {if ((x += a.x) >= Modulus) x -= Modulus; return *this;} constexpr ModInt &operator-=(const ModInt a) {if ((x += Modulus - a.x) >= Modulus) x -= Modulus; return *this;} constexpr ModInt &operator*=(const ModInt a) {(x *= a.x) %= Modulus; return *this;} constexpr ModInt &operator/=(const ModInt a) {return *this *= a.inverse();} constexpr ModInt operator+(const ModInt a) const {return ModInt(*this) += a.x;} constexpr ModInt operator-(const ModInt a) const {return ModInt(*this) -= a.x;} constexpr ModInt operator*(const ModInt a) const {return ModInt(*this) *= a.x;} constexpr ModInt operator/(const ModInt a) const {return ModInt(*this) /= a.x;} friend constexpr ostream& operator<<(ostream& os,const ModInt& a) {return os << a.x;} friend constexpr istream& operator>>(istream& is,ModInt& a) {return is >> a.x;} ModInt inverse() const {// x ^ (-1) long long a = x,b = Modulus,p = 1,q = 0; while (b) {long long d = a/b; a -= d*b; swap(a,b); p -= d*q; swap(p,q);} return ModInt(p); } ModInt pow(long long N) {// x ^ N ModInt a = 1; while (N) { if (N&1) a *= *this; *this *= *this; N >>= 1; } return a; } }; using mint = ModInt<1000000007>; //using mint = ModInt<998244353>; struct Combination { int N; //using mint = ModInt<1000000007>; //using mint = ModInt<998244353>; vector fact,ifact,invs; Combination(int N): N(N),fact(N + 1),ifact(N + 1) { fact[0] = fact[1] = 1; ifact[0] = ifact[1] = 1; for (int i = 2;i < N + 1;++i) {fact[i] = fact[i - 1] * i;} ifact[N] = fact[N].inverse(); for (int i = N;i >= 1;--i) {ifact[i - 1] = ifact[i] * i;} } void invs_build() { invs.resize(N + 1); invs[1] = 1; for (int i = 2;i < N + 1;++i) invs[i] = fact[i] * ifact[i - 1]; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[k]*ifact[n - k]; } mint npk(int n,int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[n - k]; } }; using Matrix = vector>; Matrix mat_mul(Matrix &A,Matrix &B) { Matrix ans(A.size(),vector(B[0].size(),0)); for (int i = 0;i < A.size(); i++) { for (int j = 0;j < A[0].size();j ++) { for (int k = 0;k < A[0].size(); k++) { ans[i][j] += A[i][k]*B[k][j]; } } } return ans; } Matrix mat_pow(Matrix &A,long long N) { Matrix ans(A.size(),vector(A.size(),0)); for (int i = 0;i < A.size();i ++) ans[i][i] = 1; Matrix X = A; while (N > 0) { if (N&1) ans = mat_mul(ans,X); N >>= 1; X = mat_mul(X,X); } return ans; } int main() { int K,M; ll N; cin >> K >> M >> N; Matrix A(K*K,vector(K*K,0)); rep(i,M) { int p,q,r; cin >> p >> q >> r; --p; --q; -- r; A[K*q + r][K*p + q] += 1; } A = mat_pow(A,N - 2); //rep(i,K*K) {rep(j,K*K) {cout << A[i][j];} cout << '\n';} mint ans = 0; rep(i,K){ rep(j,K) { ans += A[i*K][j]; } } cout << ans << '\n'; return 0; }