import sys import numpy as np read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines MOD = 998244353 def fft_convolve(f, g): """ 数列 (多項式) f, g の畳み込みの計算.上下 15 bitずつ分けて計算することで, 30 bit以下の整数,長さ 250000 程度の数列での計算が正確に行える. """ fft = np.fft.rfft ifft = np.fft.irfft Lf = f.shape[-1] Lg = g.shape[-1] L = Lf + Lg - 1 fft_len = 1 << L.bit_length() fh, fl = f >> 15, f & (1 << 15) - 1 gh, gl = g >> 15, g & (1 << 15) - 1 def conv(f, g): Ff = fft(f, fft_len) Fg = fft(g, fft_len) h = ifft(Ff * Fg) return np.rint(h)[..., :L].astype(np.int64) % MOD x = conv(fl, gl) z = conv(fh, gh) y = conv(fl + fh, gl + gh) - x - z return (x + (y << 15) + (z << 30)) % MOD def product_of_polynomials(polynomials): """Compute products of polynomials. The length of polynomials must be the same. Parameters ---------- polynomials : np.ndarray 2D array containing input polynomials. The i-th row polynomials[i, :] is i-th polynomial. Returns ------- product : np.ndarray Product of input polynomials. """ polys = polynomials while len(polys) > 1: if len(polys) & 1: polys = np.pad(polys, ((0, 1), (0, 0))) polys[-1, 0] = 1 P = polys[:len(polys) // 2] Q = polys[len(polys) // 2:] polys = fft_convolve(P, Q) return polys[0] N, Q = map(int, readline().split()) A = np.array(readline().split(), np.int64) A %= MOD polys = np.empty((N, 2), np.int64) polys[:, 1] = 1 polys[:, 0] = A - 1 P = product_of_polynomials(polys) for q in map(int, read().split()): print(P[q])