#pragma GCC optimize ("Ofast") #include using namespace std; void *wmem; char memarr[96000000]; template inline S min_L(S a,T b){ return a<=b?a:b; } template inline S max_L(S a,T b){ return a>=b?a:b; } template inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(const char c[]){ int i=0; for(i=0;c[i]!='\0';i++){ my_putchar_unlocked(c[i]); } } template struct maxflow{ int node; int st; int ed; int *es; int *emem; int **edge; int **rev; int *level; int *qq; T **flow; T eps; void malloc(int N){ int i; es = (int*)std::malloc(N*sizeof(int)); emem = (int*)std::malloc(N*sizeof(int)); level = (int*)std::malloc(N*sizeof(int)); qq = (int*)std::malloc(N*sizeof(int)); edge = (int**)std::malloc(N*sizeof(int*)); rev = (int**)std::malloc(N*sizeof(int*)); flow = (T**)std::malloc(N*sizeof(T*)); for(i=(0);i<(N);i++){ emem[i] = 0; edge[i] = rev[i] = NULL; flow[i] = NULL; } } void walloc(int N, void**mem = &wmem){ int i; walloc1d(&es, N, mem); walloc1d(&emem, N, mem); walloc1d(&level, N, mem); walloc1d(&qq, N, mem); walloc1d(&edge, N, mem); walloc1d(&rev, N, mem); walloc1d(&flow, N, mem); (*mem) = (flow + N); } void levelize(void){ int i; int j; int k; int t; int q_st = 0; int q_ed = 1; for(i=(0);i<(node);i++){ level[i] = -1; } level[st] = 0; qq[0] = st; while(q_st != q_ed){ i = qq[q_st++]; t = level[i] + 1; for(j=(0);j<(es[i]);j++){ if(flow[i][j] > eps){ k = edge[i][j]; if(level[k]!=-1){ continue; } level[k] = t; qq[q_ed++] = k; if(k==ed){ return; } } } } } S pushflow(int i, S lim){ int j; int k; int ji; S s; S t; S res = 0; if(i==ed){ return lim; } for(j=(0);j<(es[i]);j++){ if(flow[i][j] > eps){ k = edge[i][j]; if(level[k] != level[i]+1){ continue; } s =min_L(lim, (S)flow[i][j]); t = pushflow(k, s); if(!t){ continue; } res += t; lim -= t; ji = rev[i][j]; flow[i][j] -= t; flow[k][ji] += t; if(!lim){ break; } } } if(lim){ level[i] = -1; } return res; } S solve(int st_, int ed_){ S res = 0; st = st_; ed = ed_; for(;;){ levelize(); if(level[ed] == -1){ break; } res += pushflow(st, numeric_limits::max()); } return res; } void init(int N){ int i; node = N; for(i=(0);i<(N);i++){ es[i] = 0; } eps = (T)1e-9; } void memoryExpand(int i, int sz){ if(sz <= emem[i]){ return; } sz =max_L(sz, max_L(3, emem[i]*2)); emem[i]=sz; edge[i] = (int*)realloc(edge[i], sz*sizeof(int)); rev[i] = (int*)realloc(rev[i], sz*sizeof(int)); flow[i] = (T*)realloc(flow[i], sz*sizeof(T)); } void addEdge(int n1, int n2, T f1, T f2 = 0){ int s1 = es[n1]++; int s2 = es[n2]++; if(s1 >= emem[n1]){ memoryExpand(n1, es[n1]); } if(s2 >= emem[n2]){ memoryExpand(n2, es[n2]); } edge[n1][s1]=n2; edge[n2][s2]=n1; flow[n1][s1]=f1; flow[n2][s2]=f2; rev[n1][s1]=s2; rev[n2][s2]=s1; } void addEdgeAdv(int n1, int n2, T f1, T f2 = 0){ int s1 = es[n1]++; int s2 = es[n2]++; edge[n1][s1]=n2; edge[n2][s2]=n1; flow[n1][s1]=f1; flow[n2][s2]=f2; rev[n1][s1]=s2; rev[n2][s2]=s1; } void setGraph(int N, int M, int n1[], int n2[], T f1[], T f2[]){ int i; node = N; for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ es[n1[i]]++; es[n2[i]]++; } for(i=(0);i<(N);i++){ memoryExpand(i, es[i]); } for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ addEdgeAdv(n1[i], n2[i], f1[i], f2[i]); } eps = (T)1e-9; } void setGraph_w(int N, int M, int n1[], int n2[], T f1[], T f2[], void **mem = wmem){ int i; int j; int k; node = N; for(i=(0);i<(N);i++){ es[i] = emem[i] = 0; } for(i=(0);i<(M);i++){ es[n1[i]]++; es[n2[i]]++; } edge[0] = (int*)(*mem); int HK5nwQQr = N; for(i=(1);i<(HK5nwQQr);i++){ edge[i] = edge[i-1] + es[i-1]; } rev[0] = edge[N-1] + es[N-1]; int uaHhfk0v = N; for(i=(1);i<(uaHhfk0v);i++){ rev[i] = rev[i-1] + es[i-1]; } flow[0] = (T*)(rev[N-1] + es[N-1]); int vJNsb2nO = N; for(i=(1);i<(vJNsb2nO);i++){ flow[i] = flow[i-1] + es[i-1]; } *mem = (void*)(flow[N-1] + es[N-1]); for(i=(0);i<(N);i++){ es[i] = 0; } for(i=(0);i<(M);i++){ addEdgeAdv(n1[i], n2[i], f1[i], f2[i]); } eps = (T)1e-9; } } ; int H; int W; int A[2000]; int B[2000]; int K; int X[16]; int Y[16]; char res[2000][2001]; int main(){ wmem = memarr; int i; int j; int k; int s; int flow; int node; int st; int ed; maxflow f; rd(H); rd(W); { int Lj4PdHRW; for(Lj4PdHRW=(0);Lj4PdHRW<(H);Lj4PdHRW++){ rd(A[Lj4PdHRW]); } } { int e98WHCEY; for(e98WHCEY=(0);e98WHCEY<(W);e98WHCEY++){ rd(B[e98WHCEY]); } } rd(K); { int FmcKpFmN; for(FmcKpFmN=(0);FmcKpFmN<(K);FmcKpFmN++){ rd(X[FmcKpFmN]);X[FmcKpFmN] += (-1); rd(Y[FmcKpFmN]);Y[FmcKpFmN] += (-1); } } { int t_ynMSdg; int KrdatlYV; if(H==0){ KrdatlYV = 0; } else{ KrdatlYV = A[0]; for(t_ynMSdg=(1);t_ynMSdg<(H);t_ynMSdg++){ KrdatlYV += A[t_ynMSdg]; } } s =KrdatlYV; } int a2conNHc; int hCmBdyQB; if(W==0){ hCmBdyQB = 0; } else{ hCmBdyQB = B[0]; for(a2conNHc=(1);a2conNHc<(W);a2conNHc++){ hCmBdyQB += B[a2conNHc]; } } if(s !=hCmBdyQB){ wt_L(":("); wt_L('\n'); return 0; } for(i=(0);i<(H);i++){ for(j=(0);j<(W);j++){ res[i][j] = '.'; } } for(i=(0);i<(K);i++){ res[X[i]][Y[i]] = 'x'; } node = H + W; st = node++; ed = node++; f.malloc(node); f.init(node); for(i=(0);i<(H);i++){ f.addEdge(st, i, A[i]); } for(i=(0);i<(W);i++){ f.addEdge(i+H, ed, B[i]); } for(i=(0);i<(H);i++){ for(j=(0);j<(W);j++){ if(res[i][j] != 'x'){ f.addEdge(i,j+H, 1); } } } flow = f.solve(st,ed); if(flow != s){ wt_L(":("); wt_L('\n'); return 0; } for(i=(0);i<(H);i++){ for(j=(0);j<(f.es[i]);j++){ k = f.edge[i][j] - H; if(k < 0 || k >= W){ continue; } if(f.flow[i][j]==0){ res[i][k] = 'o'; } } } wt_L("Yay!"); wt_L('\n'); { int ytthggxT; for(ytthggxT=(0);ytthggxT<(H);ytthggxT++){ wt_L(res[ytthggxT]); wt_L('\n'); } } return 0; } // cLay varsion 20200509-1 // --- original code --- // int H, W, A[2000], B[2000], K, X[16], Y[16]; // char res[2000][2001]; // { // int i, j, k, s, flow, node, st, ed; // maxflow f; // rd(H,W,A(H),B(W),K,(X--,Y--)(K)); // s = sum(A(H)); // if(s != sum(B(W))) wt(":("), return 0; // // rep(i,H) rep(j,W) res[i][j] = '.'; // rep(i,K) res[X[i]][Y[i]] = 'x'; // // node = H + W; // st = node++; // ed = node++; // f.malloc(node); // f.init(node); // rep(i,H) f.addEdge(st, i, A[i]); // rep(i,W) f.addEdge(i+H, ed, B[i]); // rep(i,H) rep(j,W) if(res[i][j] != 'x') f.addEdge(i,j+H, 1); // // flow = f.solve(st,ed); // if(flow != s) wt(":("), return 0; // // rep(i,H) rep(j,f.es[i]){ // k = f.edge[i][j] - H; // if(k < 0 || k >= W) continue; // if(f.flow[i][j]==0) res[i][k] = 'o'; // } // // wt("Yay!"); // wtLn(res(H)); // }