#include using namespace std; // Define using ll = long long; using ull = unsigned long long; using ld = long double; template using pvector = vector>; template using rpriority_queue = priority_queue, greater>; constexpr const ll dx[4] = {1, 0, -1, 0}; constexpr const ll dy[4] = {0, 1, 0, -1}; constexpr const ll MOD = 1e9 + 7; constexpr const ll mod = 998244353; constexpr const ll INF = 1LL << 60; constexpr const ll inf = 1 << 30; constexpr const char rt = '\n'; constexpr const char sp = ' '; #define rt(i, n) (i == (ll)(n) -1 ? rt : sp) #define len(x) ((ll)(x).size()) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define mp make_pair #define mt make_tuple #define pb push_back #define eb emplace_back #define ifn(x) if (not(x)) #define elif else if #define elifn else ifn #define fi first #define se second using graph = vector>; template using wgraph = vector>; bool __DIRECTED__ = true; istream &operator>>(istream &is, graph &g) { ll a, b; is >> a >> b; g[a - 1].pb(b - 1); if (__DIRECTED__ == false) g[b - 1].pb(a - 1); return is; } template istream &operator>>(istream &is, wgraph &g) { ll a, b; T c; is >> a >> b >> c; g[a - 1].pb({b - 1, c}); if (__DIRECTED__ == false) g[b - 1].pb({a - 1, c}); return is; } template bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } // Debug #define debug(...) \ { \ cerr << __LINE__ << ": " << #__VA_ARGS__ << " = "; \ for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] "; \ cerr << rt; \ } #define dump(a, h, w) \ { \ cerr << __LINE__ << ": " << #a << " = [" << rt; \ rep(_i, h) { \ rep(_j, w) { \ if (abs(a[_i][_j]) >= INF / 2 and a[_i][_j] <= -INF / 2) \ cerr << '-'; \ if (abs(a[_i][_j]) >= INF / 2) \ cerr << "∞" << sp; \ else \ cerr << a[_i][_j] << sp; \ } \ cerr << rt; \ } \ cerr << "]" << rt; \ } #define vdump(a, n) \ { \ cerr << __LINE__ << ": " << #a << " = ["; \ rep(_i, n) { \ if (_i) cerr << sp; \ if (abs(a[_i]) >= INF / 2 and a[_i] <= -INF / 2) cerr << '-'; \ if (abs(a[_i]) >= INF / 2) \ cerr << "∞" << sp; \ else \ cerr << a[_i]; \ } \ cerr << "]" << rt; \ } // Loop #define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i) #define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i) #define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i) #define each(i, a) for (auto &&i : a) // Stream #define fout(n) cout << fixed << setprecision(n) struct io { io() { cin.tie(nullptr), ios::sync_with_stdio(false); } } io; // Speed #pragma GCC optimize("Ofast,unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") // Math inline constexpr ll gcd(const ll a, const ll b) { return b ? gcd(b, a % b) : a; } inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; } inline constexpr ll modulo(const ll n, const ll m = MOD) { ll k = n % m; return k + m * (k < 0); } inline constexpr ll chmod(ll &n, const ll m = MOD) { n %= m; return n += m * (n < 0); } inline constexpr ll mpow(ll a, ll n, const ll m = MOD) { ll r = 1; rep(i, 64) { if (n & (1LL << i)) r *= a; chmod(r, m); a *= a; chmod(a, m); } return r; } inline ll inv(const ll n, const ll m = MOD) { ll a = n, b = m, x = 1, y = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); x -= t * y; swap(x, y); } return modulo(x, m); } struct SCC { ll num, new_num; vector> graph; vector> rgraph; vector> new_graph; vector in_count; vector new_in_count; vector tp_index; vector nodes; vector used; SCC(ll n) : num(n), graph(n), rgraph(n), in_count(n), tp_index(n), used(n) {} void add_edge(ll from, ll to) { graph[from].push_back(to); rgraph[to].push_back(from); in_count[to]++; } void new_add_edge(ll from, ll to) { ll f = tp_index[from], t = tp_index[to]; if (f == t) return; new_graph[f].push_back(t); new_in_count[t]++; } void dfs(ll pos) { used[pos] = true; each(i, graph[pos]) if (!used[i]) dfs(i); nodes.push_back(pos); } void rdfs(ll pos, ll k) { used[pos] = true; tp_index[pos] = k; each(i, rgraph[pos]) if (!used[i]) rdfs(i, k); } ll scc() { fill(all(used), false); nodes.clear(); rep(i, num) if (!used[i]) dfs(i); reverse(all(nodes)); fill(all(used), false); ll k = 0; each(i, nodes) if (!used[i]) rdfs(i, k++); new_graph.resize(k), new_in_count.resize(k); build_new_graph(); return new_num = k; } void build_new_graph() { rep(i, num) each(j, graph[i]) new_add_edge(i, j); } }; struct SAT { ll n; SCC scc; vector result; SAT(ll n) : n(n), scc(2 * n), result(2 * n) {} ll inverse(ll x) { return x >= n ? x - n : x + n; } void addliteral(ll a, ll b, bool a_inv = false, bool b_inv = false) { if (a_inv) a = inverse(a); if (b_inv) b = inverse(b); scc.add_edge(inverse(a), b); scc.add_edge(inverse(b), a); } bool calc() { scc.scc(); for (ll i = 0; i < n; i++) { if (scc.tp_index[i] > scc.tp_index[n + i]) { result[i] = true; result[n + i] = false; } else if (scc.tp_index[i] == scc.tp_index[n + i]) { return false; } else { result[n + i] = true; result[i] = false; } } return true; } bool val(ll x) { return result[x]; } }; signed main() { ll N; cin >> N; ll S[N], T[N], U[N]; rep(i, N) cin >> S[i], S[i]--; rep(i, N) cin >> T[i], T[i]--; rep(i, N) cin >> U[i]; SAT sat(N * N); rep(i, N) rep(j, N) { sat.addliteral(N * S[i] + j, N * j + T[i], U[i] & 1, U[i] & 2); } if (sat.calc()) { rep(i, N) rep(j, N) cout << sat.val(i * N + j) << rt(j, N); } else { cout << -1 << rt; } }