class Factorial(): def __init__(self, mod=10**9 + 7): self.m = mod self._factorial = [1] self._size = 1 self._factorial_inv = [1] self._size_inv = 1 def __call__(self, n): return self.fact(n) def fact(self, n): """ n! (mod m) """ if n >= self.m: return 0 self._make(n) return self._factorial[n] def _make(self, n): """ Calc from self._size to n!^-1 : O(n) """ if n >= self.m: n = self.m if self._size < n+1: for i in range(self._size, n+1): self._factorial.append(self._factorial[i-1]*i % self.m) self._size = n+1 def fact_inv(self, n): """ n!^-1 (mod m) """ if n >= self.m: raise ValueError('Modinv is not exist! arg={}'.format(n)) if self._size_inv < n+1: self._factorial_inv += [-1] * (n+1-self._size_inv) self._size_inv = n+1 if self._factorial_inv[n] == -1: self._factorial_inv[n] = self.modinv(self.fact(n)) return self._factorial_inv[n] def _make_inv(self, n, r=1): """ Calc r!^1 ... n!^-1 : O(n-r) """ if n >= self.m: n = self.m - 1 if self._size_inv < n+1: self._factorial_inv += [-1] * (n+1-self._size_inv) self._size_inv = n+1 self._factorial_inv[n] = self.modinv(self.fact(n)) for i in range(n, r+1, -1): self._factorial_inv[i-1] = self._factorial_inv[i]*i % self.m @staticmethod def xgcd(a, b): """ Return (gcd(a, b), x, y) such that a*x + b*y = gcd(a, b) """ x0, x1, y0, y1 = 0, 1, 1, 0 while a != 0: (q, a), b = divmod(b, a), a y0, y1 = y1, y0 - q * y1 x0, x1 = x1, x0 - q * x1 return b, x0, y0 def modinv(self, n): """ n^-1 (mod m) """ g, x, _ = self.xgcd(n, self.m) if g != 1: raise ValueError('Modinv is not exist! arg={}'.format(n)) return x % self.m def comb(self, n, r): """ nCr (mod m) """ if r > n: return 0 t = self(n)*self.fact_inv(n-r) % self.m return t*self.fact_inv(r) % self.m def comb_(self, n, r): """ nCr (mod m) : O(r) """ c = 1 for i in range(1, r+1): c *= (n-i+1) * self.fact_inv(i) c %= self.m return c def comb_with_repetition(self, n, r): """ nHr (mod m) """ t = self(n+r-1)*self.fact_inv(n-1) % self.m return t*self.fact_inv(r) % self.m def perm(self, n, r): """ nPr (mod m) """ if r > n: return 0 return self(n)*self.fact_inv(n-r) % self.m print(Factorial()(int(input())))