(eval-when (:compile-toplevel :load-toplevel :execute) (sb-int:defconstant-eqx opt #+swank '(optimize (speed 3) (safety 2)) #-swank '(optimize (speed 3) (safety 0) (debug 0)) #'equal) #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t) #-swank (set-dispatch-macro-character #\# #\> (lambda (s c p) (declare (ignore c p)) `(values ,(read s nil nil t))))) #+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax) (defmacro define-int-types (&rest bits) `(progn ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits) ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits))) (define-int-types 2 4 7 8 15 16 31 32 62 63 64) ;; BEGIN_INSERTED_CONTENTS ;; Blankinship algorithm ;; Reference: https://topcoder-g-hatena-ne-jp.jag-icpc.org/spaghetti_source/20130126/ (Japanese) (declaim (ftype (function * (values fixnum fixnum &optional)) %ext-gcd)) (defun %ext-gcd (a b) (declare (optimize (speed 3) (safety 0)) (fixnum a b)) (let ((y 1) (x 0) (u 1) (v 0)) (declare (fixnum y x u v)) (loop (when (zerop a) (return (values x y))) (let ((q (floor b a))) (decf x (the fixnum (* q u))) (rotatef x u) (decf y (the fixnum (* q v))) (rotatef y v) (decf b (the fixnum (* q a))) (rotatef b a))))) ;; Simple recursive version. A bit slower but more comprehensible. ;; https://cp-algorithms.com/algebra/extended-euclid-algorithm.html (English) ;; https://drken1215.hatenablog.com/entry/2018/06/08/210000 (Japanese) ;; (defun %ext-gcd (a b) ;; (declare (optimize (speed 3) (safety 0)) ;; (fixnum a b)) ;; (if (zerop b) ;; (values 1 0) ;; (multiple-value-bind (p q) (floor a b) ; a = pb + q ;; (multiple-value-bind (v u) (%ext-gcd b q) ;; (declare (fixnum u v)) ;; (values u (the fixnum (- v (the fixnum (* p u))))))))) ;; TODO: deal with bignums (declaim (inline ext-gcd)) (defun ext-gcd (a b) "Returns two integers X and Y which satisfy AX + BY = gcd(A, B)." (declare ((integer #.(- most-positive-fixnum) #.most-positive-fixnum) a b)) (if (>= a 0) (if (>= b 0) (%ext-gcd a b) (multiple-value-bind (x y) (%ext-gcd a (- b)) (declare (fixnum x y)) (values x (- y)))) (if (>= b 0) (multiple-value-bind (x y) (%ext-gcd (- a) b) (declare (fixnum x y)) (values (- x) y)) (multiple-value-bind (x y) (%ext-gcd (- a) (- b)) (declare (fixnum x y)) (values (- x) (- y)))))) (declaim (inline mod-inverse) (ftype (function * (values (mod #.most-positive-fixnum) &optional)) mod-inverse)) ;; (defun mod-inverse (a modulus) ;; "Solves ax ≡ 1 mod m. A and M must be coprime." ;; (declare (integer a) ;; ((integer 1 #.most-positive-fixnum) modulus)) ;; (mod (%ext-gcd (mod a modulus) modulus) modulus)) ;; FIXME: Perhaps no advantage in efficiency? Then I should use the above simple ;; code. (defun mod-inverse (a modulus) "Solves ax ≡ 1 mod m. A and M must be coprime." (declare ((integer 1 #.most-positive-fixnum) modulus)) (let ((a (mod a modulus)) (b modulus) (u 1) (v 0)) (declare (fixnum a b u v)) (loop until (zerop b) for quot = (floor a b) do (decf a (the fixnum (* quot b))) (rotatef a b) (decf u (the fixnum (* quot v))) (rotatef u v)) (setq u (mod u modulus)) (if (< u 0) (+ u modulus) u))) ;; not tested ;; TODO: move to another file (declaim (inline mod-binomial)) (defun mod-binomial (n k modulus) (declare (uint31 n k modulus)) (if (or (< n k) (< n 0) (< k 0)) 0 (let ((k (if (< k (- n k)) k (- n k))) (num 1) (denom 1)) (declare (uint31 k num denom)) (loop for x of-type uint31 from n above (- n k) do (setq num (mod (* num x) modulus))) (loop for x of-type uint31 from 1 to k do (setq denom (mod (* denom x) modulus))) (mod (* num (mod-inverse denom modulus)) modulus)))) (in-package :cl-user) (defmacro dbg (&rest forms) #+swank (if (= (length forms) 1) `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms)) `(format *error-output* "~A => ~A~%" ',forms `(,,@forms))) #-swank (declare (ignore forms))) (declaim (inline println)) (defun println (obj &optional (stream *standard-output*)) (let ((*read-default-float-format* 'double-float)) (prog1 (princ obj stream) (terpri stream)))) (defconstant +mod+ 1000000007) ;;; ;;; Body ;;; (defun main () (declare #.opt) (let* ((n (read)) (m (read))) (declare (uint31 n m)) (println (mod-binomial (+ m 1) (+ n 1) +mod+)))) #-swank (main) ;;; ;;; Test and benchmark ;;; #+swank (defun io-equal (in-string out-string &key (function #'main) (test #'equal)) "Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if the string output to *STANDARD-OUTPUT* is equal to OUT-STRING." (labels ((ensure-last-lf (s) (if (eql (uiop:last-char s) #\Linefeed) s (uiop:strcat s uiop:+lf+)))) (funcall test (ensure-last-lf out-string) (with-output-to-string (out) (let ((*standard-output* out)) (with-input-from-string (*standard-input* (ensure-last-lf in-string)) (funcall function))))))) #+swank (defun get-clipbrd () (with-output-to-string (out) #+os-windows (run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t) #+os-unix (run-program "xsel" '("-b" "-o") :output out :search t))) #+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname)) #+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*)) #+swank (defun run (&optional thing (out *standard-output*)) "THING := null | string | symbol | pathname null: run #'MAIN using the text on clipboard as input. string: run #'MAIN using the string as input. symbol: alias of FIVEAM:RUN!. pathname: run #'MAIN using the text file as input." (let ((*standard-output* out)) (etypecase thing (null (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd))) (main))) (string (with-input-from-string (*standard-input* (delete #\Return thing)) (main))) (symbol (5am:run! thing)) (pathname (with-open-file (*standard-input* thing) (main)))))) #+swank (defun gen-dat () (uiop:with-output-file (out *dat-pathname* :if-exists :supersede) (format out ""))) #+swank (defun bench (&optional (out (make-broadcast-stream))) (time (run *dat-pathname* out))) ;; To run: (5am:run! :sample) #+swank (it.bese.fiveam:test :sample (it.bese.fiveam:is (common-lisp-user::io-equal "0 3 " "4 ")) (it.bese.fiveam:is (common-lisp-user::io-equal "12 20 " "203490 ")) (it.bese.fiveam:is (common-lisp-user::io-equal "100 200 " "256185103 ")))