/** * code generated by JHelper * More info: https://github.com/AlexeyDmitriev/JHelper * @author */ #include using namespace std; using ll = long long; //#pragma GCC optimize("Ofast") //#pragma GCC optimize("unroll-loops") #define VI vector #define G(size_1) vector>(size_1, vector()) #define SZ(x) ((int)(x).size()) #define READ ({int t;cin >> t;t;}) #define PII pair #define FOR(i, _begin, _end) for (__typeof(_end) end = _end, begin = _begin, i = (begin) - ((begin) > (end)); i != (end) - ((begin) > (end)); i += 1 - 2 * ((begin) > (end))) #define REP(i, end) for (__typeof(end) i = 0, _len = (end); i < (_len); i += 1) #define ALL(x) (x).begin(),(x).end() #define RALL(x) (x).rbegin(),(x).rend() #define F first #define S second #define y0 y3487465 #define y1 y8687969 #define j0 j1347829 #define j1 j234892 #define MOD(x, m) ((((x) % (m)) + (m)) % (m)) #define BIT(n) (1LL<<(n)) #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ); #define EB emplace_back #define PB push_back #define fcout cout << fixed << setprecision(12) #define fcerr cerr << fixed << setprecision(12) #define print(x) cout << (x) << '\n' #define printE(x) cout << (x) << endl #define fprint(x) cout << fixed << setprecision(12) << (x) << endl # define BYE(a) do { cout << (a) << endl; return ; } while (false) #ifdef DEBUG #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator _it(_ss); _err(cerr,_it, args); } #define DBG(x) std::cerr << #x << " = " << x << endl; #else #define DBG(x) {}; #define ERR(args...) {}; #endif void _err(std::ostream &cerr, istream_iterator it) { cerr << endl; } template void _err(std::ostream &cerr, istream_iterator it, T a, Args... args) { cerr << *it << " = " << a << " "; _err(cerr, ++it, args...); } const double pi = 2 * acos(.0); const int inf = 0x3f3f3f3f; const ll mod = (ll) (1e9) + 7; template bool Chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool Chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template istream &operator>>(istream &is, vector &V) { for (auto &&ele : V)is >> ele; return is; } template ostream &operator<<(ostream &os, const vector V) { os << "["; int cnt = 0; T curr; if (!V.empty()) { for (int i = 0; i < V.size() - 1; ++i) { if (V[i] == curr)cnt++; else cnt = 0; if (cnt == 4)os << "... "; if (cnt < 4) os << i << ":" << V[i] << " "; curr = V[i]; } os << V.size() - 1 << ":" << V.back(); } os << "]\n"; return os; } template ostream &operator<<(ostream &os, const pair P) { os << "("; os << P.first << "," << P.second; os << ")"; return os; } template ostream &operator<<(ostream &os, const set V) { os << "{"; if (!V.empty()) { auto it = V.begin(); for (int i = 0; i < V.size() - 1; ++i) { os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template ostream &operator<<(ostream &os, const unordered_set V) { os << "{"; if (!V.empty()) { auto it = V.begin(); for (int i = 0; i < V.size() - 1; ++i) { os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template ostream &operator<<(ostream &os, const multiset V) { os << "{"; if (!V.empty()) { auto it = V.begin(); for (int i = 0; i < V.size() - 1; ++i) { os << *it << " "; it++; } os << *it; } os << "}"; return os; } template ostream &operator<<(ostream &os, const map V) { os << "{"; if (!V.empty()) { auto it = V.begin(); for (int i = 0; i < V.size() - 1; ++i) { os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template ostream &operator<<(ostream &os, const unordered_map V) { os << "{"; if (!V.empty()) { auto it = V.begin(); for (int i = 0; i < V.size() - 1; ++i) { os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template ostream &operator<<(ostream &os, const deque V) { os << "["; if (!V.empty()) { for (int i = 0; i < V.size() - 1; ++i) { os << V[i] << "->"; } if (!V.empty())os << V.back(); } os << "]\n"; return os; }; template ostream &operator<<(ostream &os, const priority_queue V) { priority_queue _V = V; os << "["; if (!_V.empty()) { while (_V.size() > 1) { os << _V.top() << "->"; _V.pop(); } os << _V.top(); } os << "]\n"; return os; }; template struct y_combinator { F f; // the lambda will be stored here // a forwarding operator(): template decltype(auto) operator()(Args &&... args) const { // we pass ourselves to f, then the arguments. // the lambda should take the first argument as `auto&& recurse` or similar. return f(*this, std::forward(args)...); } }; // helper function that deduces the type of the lambda: template y_combinator> recursive(F &&f) { return {std::forward(f)}; } struct hash_pair { template size_t operator()(const pair &p) const { auto hash1 = hash{}(p.first); auto hash2 = hash{}(p.second); return hash1 ^ hash2; } }; template std::vector multi_vector(int n, U v) { return std::vector(n, v); } template auto multi_vector(int n, Args... args) { auto val = multi_vector(std::forward(args)...); return std::vector(n, std::move(val)); } class No1140EXPotentiaLLL { public: void solve(std::istream &cin, std::ostream &cout, std::ostream &cerr) { int testcases; cin >> testcases; auto f = [&](int P) { if (P == 1)return 0; for (int i = 2; i * i <= P; i++)if (P % i == 0)return 0; return 1; }; for (int case_num = 1; case_num <= testcases; case_num++) { ll A, P; cin >> A >> P; if (f(P)) { print(!!(A%P)); } else print(-1); } } }; #undef int int main() { No1140EXPotentiaLLL solver; std::istream& in(std::cin); std::ostream& out(std::cout); std::ostringstream err; in.tie(0); ios::sync_with_stdio(0); solver.solve(in, out,err); return 0; }