#include using namespace std; using ll = long long; using VI = vector; using VL = vector; using VS = vector; using VB = vector; using VVB = vector>; using VVI = vector; using VVL = vector; using PII = std::pair; using VPII = std::vector>; using PLL = std::pair; using VPLL = std::vector>; using TI3 = std::tuple; using TI4 = std::tuple; using TL3 = std::tuple; using TL4 = std::tuple; #define rep(i, n) for (int i = 0; i < (int)(n); i++) #define repr(i, n) for (int i = (int)(n)-1; i >= 0; i--) #define rep2(i, s, n) for (int i = (s); i < (int)(n); i++) #define rep3(i, s, n, d) for (int i = (s); i < (int)(n); i += (d)) #define allpt(v) (v).begin(), (v).end() #define allpt_c(v) (v).cbegin(), (v).cend() #define allpt_r(v) (v).rbegin(), (v).rend() #define allpt_cr(v) (v).crbegin(), (v).crend() const int mod1 = 1e9 + 7, mod2 = 998244353, mod3 = 1e9 + 9; const int mod = mod1; const ll inf = 1e18; const string wsp = " "; const string tb = "\t"; const string rt = "\n"; template void show1dvec(const vector &v) { if (v.size() == 0) return; int n = v.size() - 1; rep(i, n) cout << v[i] << wsp; cout << v[n] << rt; return; } template void show2dvec(const vector> &v) { int n = v.size(); rep(i, n) show1dvec(v[i]); } template void show1dpair(const vector> &v) { int n = v.size(); rep(i, n) cout << v[i].first << wsp << v[i].second << rt; return; } template void pairzip(const vector> &v, vector &t, vector &s) { int n = v.size(); rep(i, n) { t.push_back(v[i].first); s.push_back(v[i].second); } return; } template void maxvec(vector &v) { T s = v[0]; int n = v.size(); rep(i, n - 1) { if (s > v[i + 1]) { v[i + 1] = s; } s = v[i + 1]; } } template bool myfind(T t, S s) { return find(t.cbegin(), t.cend(), s) != t.cend(); } bool check(int y, int x, int h, int w) { return 0 <= y && y < h && 0 <= x && x < w; } bool iskadomatsu(int a, int b, int c) { return (a != b && b != c && c != a) && ((a > b && b < c) || (a < b && b > c)); } double euc_dist(PII a, PII b) { return sqrt(pow(a.first - b.first, 2) + pow(a.second - b.second, 2)); } VS split(string s, char c) { VS ret; string part; s += c; rep(i, s.length()) { if (s[i] == c) { ret.emplace_back(part); part = ""; } else if (s[i] != c) { part += s[i]; } } return ret; } template ll pow_mod(T p, S q, R mod = 1ll) { ll ret = 1, r = p; while (q) { if (q % 2) ret *= r, ret %= mod; r = (r * r) % mod, q /= 2; } return ret % mod; } template ll pow_no_mod(T p, S q) { ll ret = 1, r = p; while (q) { if (q % 2) ret *= r; r = (r * r), q /= 2; } return ret; } void make_frac_tables(VL &frac_list, VL &frac_inv_list) { rep(i, frac_list.size() - 1) { frac_list[i + 1] *= frac_list[i] * (i + 1); frac_list[i + 1] %= mod; frac_inv_list[i + 1] *= frac_inv_list[i] * pow_mod(i + 1, mod - 2, mod); frac_inv_list[i + 1] %= mod; } } pair make_frac_tables(int n) { VL frac_list(n + 1, 1), frac_inv_list(n + 1, 1); rep(i, n) { frac_list[i + 1] *= frac_list[i] * (i + 1); frac_list[i + 1] %= mod; frac_inv_list[i + 1] *= frac_inv_list[i] * pow_mod(i + 1, mod - 2, mod); frac_inv_list[i + 1] %= mod; } return make_pair(frac_list, frac_inv_list); } ll comb(int a, int b, const VL &frac_list, const VL &frac_inv_list) { if (a < b) return 0; if (b < 0) return 0; ll ret = frac_list[a]; ret *= frac_inv_list[b]; ret %= mod; ret *= frac_inv_list[a - b]; ret %= mod; return ret; } class Matrix_n { int matsize; VVL mat; public: Matrix_n(); Matrix_n(int n); Matrix_n(int n, const VVL &inmat); void showmat(); void identify(); ll getone(const int &i, const int &j); int getsize(); const Matrix_n operator+(const Matrix_n &b); const Matrix_n operator-(const Matrix_n &b); const Matrix_n operator*(const Matrix_n &b); Matrix_n &operator+=(const Matrix_n &b); Matrix_n &operator-=(const Matrix_n &b); const Matrix_n operator+(); const Matrix_n operator-(); const Matrix_n operator%(const int &b); Matrix_n &operator%=(const int &b); }; Matrix_n::Matrix_n() { matsize = 0; VVL mat; } Matrix_n::Matrix_n(int n) { matsize = n; mat.resize(n); rep(i, n) rep(j, n) mat[i] .emplace_back(0); } Matrix_n::Matrix_n(int n, const VVL &inmat) { matsize = n; mat.resize(n); rep(i, n) { mat[i].resize(n); rep(j, n) { mat[i][j] = inmat[i][j]; } } } void Matrix_n::identify() { rep(i, matsize) rep(j, matsize) { mat[i][j] = i == j ? 1 : 0; } } ll Matrix_n::getone(const int &i, const int &j) { return mat[i][j]; } int Matrix_n::getsize() { return matsize; } const Matrix_n Matrix_n::operator+(const Matrix_n &b) { Matrix_n ret(matsize); rep(i, matsize) rep(j, matsize) { ret.mat[i][j] = mat[i][j] + b.mat[i][j]; } return ret; } const Matrix_n Matrix_n::operator-(const Matrix_n &b) { Matrix_n ret(matsize); rep(i, matsize) rep(j, matsize) { ret.mat[i][j] = mat[i][j] - b.mat[i][j]; } return ret; } const Matrix_n Matrix_n::operator*(const Matrix_n &b) { Matrix_n ret(matsize); rep(i, matsize) rep(j, matsize) rep(k, matsize) { ret.mat[i][j] += mat[i][k] * b.mat[k][j]; } return ret; } const Matrix_n Matrix_n::operator%(const int &b) { Matrix_n ret(matsize); rep(i, matsize) rep(j, matsize) { ret.mat[i][j] = mat[i][j] % b; } return ret; } const Matrix_n Matrix_n::operator+() { return *this; } const Matrix_n Matrix_n::operator-() { Matrix_n ret(matsize); rep(i, matsize) rep(j, matsize) { ret.mat[i][j] = -mat[i][j]; } return ret; } Matrix_n &Matrix_n::operator+=(const Matrix_n &b) { rep(i, matsize) rep(j, matsize) { mat[i][j] += b.mat[i][j]; } return *this; } Matrix_n &Matrix_n::operator-=(const Matrix_n &b) { rep(i, matsize) rep(j, matsize) { mat[i][j] -= b.mat[i][j]; } return *this; } Matrix_n &Matrix_n::operator%=(const int &b) { rep(i, matsize) rep(j, matsize) { mat[i][j] %= b; } return *this; } Matrix_n mat_pow_mod(Matrix_n a, ll p, ll m) { const int n = a.getsize(); Matrix_n b(n); b.identify(); while(p > 0) { if (p % 2) { b = b * a; b %= mod; } p /= 2; a = a * a; a %= m; } return b; } void Matrix_n::showmat() { show2dvec(mat); } int main() { // cin.tie(0); // ios::sync_with_stdio(false); #ifdef DEBUG cout << "DEBUG MODE" << endl; ifstream in("input.txt"); //for debug cin.rdbuf(in.rdbuf()); //for debug #endif constexpr int m = 4; ll n; cin >> n; VVL init = {{0, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 0}}; Matrix_n a(4, init), b; b = mat_pow_mod(a, n, mod); cout << b.getone(0, 0) << rt; return 0; }