#include using namespace std; typedef signed long long ll; #undef _P #define _P(...) (void)printf(__VA_ARGS__) #define FOR(x,to) for(x=0;x<(to);x++) #define FORR(x,arr) for(auto& x:arr) #define ITR(x,c) for(__typeof(c.begin()) x=c.begin();x!=c.end();x++) #define ALL(a) (a.begin()),(a.end()) #define ZERO(a) memset(a,0,sizeof(a)) #define MINUS(a) memset(a,0xff,sizeof(a)) //------------------------------------------------------- int N,M; int A[101010]; const int mo=998244353; ll modpow(ll a, ll n = mo-2) { ll r=1; while(n) r=r*((n%2)?a:1)%mo,a=a*a%mo,n>>=1; return r; } template vector fft(vector v, bool rev=false) { int n=v.size(),i,j,m; for(i=0,j=1;j>1;k>(i^=k);k>>=1); if(i>j) swap(v[i],v[j]); } for(int m=2; m<=n; m*=2) { T wn=modpow(5,(mo-1)/m); if(rev) wn=modpow(wn); for(i=0;i=mo) v[j1]-=mo; while(v[j2]>=mo) v[j2]-=mo; w=(ll)w*wn%mo; } } } if(rev) { ll rv = modpow(n); FOR(i,n) v[i]=(ll)v[i]*rv%mo; } return v; } template vector MultPoly(vector P,vector Q,bool resize=false) { if(resize) { int maxind=0,pi=0,qi=0,i; int s=2; FOR(i,P.size()) if(norm(P[i])) pi=i; FOR(i,Q.size()) if(norm(Q[i])) qi=i; maxind=pi+qi+1; while(s*2 pair,vector> add(pair,vector> a, pair,vector> b) { vector c=MultPoly(a.first,b.second,true); vector d=MultPoly(b.first,a.second,true); vector e=MultPoly(a.second,b.second,true); if(c.size()=mo) c[i]-=mo; } return {c,e}; } // 逆数 template vector inverse(vector a) { assert(a[0]>0); vector b={(T)modpow(a[0])}; while(b.size() c(a.begin(),a.begin()+min(a.size(),2*b.size())); vector d=MultPoly(b,b,true); if(d.size()>a.size()) d.resize(a.size()); c = MultPoly(c,d,true); b.resize(2*b.size()); int i; for(i=b.size()/2;i vector derivative(vector a) { if(a.size()<=1) return {0}; for(int i=1;i vector primitive(vector a) { a.resize(a.size()+1); int i; for(int i=a.size()-1;i>=1;i--) a[i]=(ll)a[i-1]*modpow(i)%mo; a[0]=0; return a; } // log log(f(x))=\int(f'(x)/f(x)) template vector logarithm(vector a) { vector P=derivative(a); vector Q=inverse(a); return primitive(MultPoly(P,Q,true)); } void solve() { int i,j,k,l,x,y; string s; cin>>N>>M; queue> Q; FOR(i,N) { cin>>A[i]; Q.push({1,(mo-A[i])%mo}); } while(Q.size()>=2) { auto a=Q.front(); Q.pop(); auto b=Q.front(); Q.pop(); Q.push(MultPoly(a,b,true)); } auto a=logarithm(Q.front()); for(i=1;i<=M;i++) cout<<1LL*(mo-a[i])*i%mo<<" "; cout<