package main import ( "bufio" "fmt" "image" "math" "os" "sort" "strconv" ) func out(x ...interface{}) { fmt.Println(x...) } var sc = bufio.NewScanner(os.Stdin) func getInt() int { sc.Scan() i, e := strconv.Atoi(sc.Text()) if e != nil { panic(e) } return i } func getInts(N int) []int { ret := make([]int, N) for i := 0; i < N; i++ { ret[i] = getInt() } return ret } func getString() string { sc.Scan() return sc.Text() } // min, max, asub, absなど基本関数 func max(a, b int) int { if a > b { return a } return b } func min(a, b int) int { if a < b { return a } return b } func asub(a, b int) int { if a > b { return a - b } return b - a } func abs(a int) int { if a >= 0 { return a } return -a } func lowerBound(a []int, x int) int { idx := sort.Search(len(a), func(i int) bool { return a[i] >= x }) return idx } func upperBound(a []int, x int) int { idx := sort.Search(len(a), func(i int) bool { return a[i] > x }) return idx } // UnionFind高速 type UnionFind struct { d []int } func newUnionFind(N int) *UnionFind { u := new(UnionFind) u.d = make([]int, N) for i := 0; i < N; i++ { u.d[i] = -1 } return u } func (p *UnionFind) root(x int) int { if p.d[x] < 0 { return x } p.d[x] = p.root(p.d[x]) return p.d[x] } func (p *UnionFind) unite(x, y int) bool { x = p.root(x) y = p.root(y) if x == y { return false } if p.d[x] > p.d[y] { x, y = y, x } p.d[x] += p.d[y] p.d[y] = x return true } func (p *UnionFind) same(x, y int) bool { return p.root(x) == p.root(y) } func (p *UnionFind) size(x int) int { return -p.d[p.root(x)] } type pair struct { x, y int } // ConvexHull returns the set of points that define the // convex hull of p in CCW order starting from the left most. func (p points) ConvexHull() points { // From https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain // with only minor deviations. sort.Sort(p) var h points // Lower hull for _, pt := range p { for len(h) >= 2 && !ccw(h[len(h)-2], h[len(h)-1], pt) { h = h[:len(h)-1] } h = append(h, pt) } // Upper hull for i, t := len(p)-2, len(h)+1; i >= 0; i-- { pt := p[i] for len(h) >= t && !ccw(h[len(h)-2], h[len(h)-1], pt) { h = h[:len(h)-1] } h = append(h, pt) } return h[:len(h)-1] } // ccw returns true if the three points make a counter-clockwise turn func ccw(a, b, c image.Point) bool { return ((b.X - a.X) * (c.Y - a.Y)) > ((b.Y - a.Y) * (c.X - a.X)) } type points []image.Point func (p points) Len() int { return len(p) } func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p points) Less(i, j int) bool { if p[i].X == p[j].X { return p[i].Y < p[i].Y } return p[i].X < p[j].X } // func main() { // pts := points{ // {16, 3}, {12, 17}, {0, 6}, {-4, -6}, {16, 6}, // {16, -7}, {16, -3}, {17, -4}, {5, 19}, {19, -8}, // {3, 16}, {12, 13}, {3, -4}, {17, 5}, {-3, 15}, // {-3, -9}, {0, 11}, {-9, -3}, {-4, -2}, {12, 10}, // } // pts = append(pts, image.Point{1, 1}) // hull := pts.ConvexHull() // fmt.Println("Convex Hull:", hull) // } func main() { sc.Split(bufio.ScanWords) N := getInt() if N == 0 { out(1) return } x := make([]int, N) y := make([]int, N) m := make(map[pair][]int) for i := 0; i < N; i++ { x[i], y[i] = getInt(), getInt() pos := pair{x[i] / 10, y[i] / 10} m[pos] = append(m[pos], i) } uf := newUnionFind(N) for p, e := range m { for yy := p.y - 1; yy <= p.y+1; yy++ { for xx := p.x - 1; xx <= p.x+1; xx++ { v := m[pair{xx, yy}] for _, ei := range e { for _, vi := range v { dx := abs(x[ei] - x[vi]) dy := abs(y[ei] - y[vi]) if dx*dx+dy*dy <= 100 { uf.unite(ei, vi) } } } // out(xx, yy, p, e, v) } } } g := make(map[int][]int) for i := 0; i < N; i++ { r := uf.root(i) g[r] = append(g[r], i) } ans := 0 for _, v := range g { if len(v) <= 1 { continue } pts := make(points, 0) tx := x[v[0]] ty := y[v[0]] flgx := true flgy := true for _, e := range v { pts = append(pts, image.Point{x[e], y[e]}) if x[e] != tx { flgx = false } if y[e] != ty { flgy = false } } flg := flgx || flgy // 同一直線状に並んでいる場合はと凸包検知しない hull := pts if flg == false { hull = pts.ConvexHull() } for _, i := range hull { for _, j := range hull { xx := abs(i.X - j.X) yy := abs(i.Y - j.Y) ans = max(ans, xx*xx+yy*yy) } } } out(math.Sqrt(float64(ans)) + 2) }