import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } enum NUM_ITERS = 300; void main() { try { for (; ; ) { const N = readInt(); auto A = new int[N]; foreach (i; 0 .. N) { A[i] = readInt(); } auto sums = new int[1 << N]; foreach (i; 0 .. N) { foreach (p; 0 .. 1 << i) { sums[p | 1 << i] = sums[p] + A[i]; } } const ASum = sums[(1 << N) - 1]; auto dp1 = new real[][](1 << N, ASum + 1); auto dp0 = new real[][](1 << N, ASum + 1); foreach (x; 0 .. ASum + 1) { dp1[0][x] = dp0[0][x] = (x > ASum - x) ? 1.0L : 0.0L; } foreach (p; 1 .. 1 << N) { auto app = new bool[ASum + 1]; const sup = ((1 << N) - 1) ^ p; for (int q = sup; ; --q &= sup) { app[sums[q]] = true; if (q == 0) { break; } } foreach (x; 0 .. ASum + 1) { if (app[x]) { dp1[p][x] = -real.infinity; foreach (i; 0 .. N) { if (p & 1 << i) { real mn = +real.infinity; foreach (j; 0 .. N) { if (p & 1 << j) { /* t = (1/A[i]) dp0[*][*] + (1 - 1/A[i]) ((1/A[j]) dp1[*][*] + (1 - 1/A[i]) t) */ const t = ((1.0L / A[i]) * dp0[p ^ 1 << i][x + A[i]] + (1.0L - 1.0L / A[i]) * (1.0L / A[j]) * dp1[p ^ 1 << j][x]) / (1.0L - (1.0L - 1.0L / A[i]) * (1.0L - 1.0L / A[j])); chmin(mn, t); } } chmax(dp1[p][x], mn); } } dp0[p][x] = +real.infinity; foreach (i; 0 .. N) { if (p & 1 << i) { real mx = -real.infinity; foreach (j; 0 .. N) { if (p & 1 << j) { /* t = (1/A[i]) dp1[*][*] + (1 - 1/A[i]) ((1/A[j]) dp0[*][*] + (1 - 1/A[i]) t) */ const t = ((1.0L / A[i]) * dp1[p ^ 1 << i][x] + (1.0L - 1.0L / A[i]) * (1.0L / A[j]) * dp0[p ^ 1 << j][x + A[j]]) / (1.0L - (1.0L - 1.0L / A[i]) * (1.0L - 1.0L / A[j])); chmax(mx, t); } } chmin(dp0[p][x], mx); } } } } } writefln("%.12f", dp1[(1 << N) - 1][0]); } } catch (EOFException e) { } }