#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; typedef long long ll; typedef unsigned int ui; const ll mod = 1000000007; const ll INF = (ll)1000000007 * 1000000007; typedef pair P; #define stop char nyaa;cin>>nyaa; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=sta;i--) #define rep1(i,n) for(int i=1;i<=n;i++) #define per1(i,n) for(int i=n;i>=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef long double ld; const ld eps = 1e-8; const ld pi = acos(-1.0); typedef pair LP; int dx[4]={1,-1,0,0}; int dy[4]={0,0,1,-1}; template struct ModInt { long long x; ModInt() : x(0) {} ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} explicit operator int() const {return x;} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const{ int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } return ModInt(u); } ModInt power(long long p) const{ int a = x; if (p==0) return 1; if (p==1) return ModInt(a); if (p%2==1) return (ModInt(a)*ModInt(a)).power(p/2)*ModInt(a); else return (ModInt(a)*ModInt(a)).power(p/2); } ModInt power(const ModInt p) const{ return ((ModInt)x).power(p.x); } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long x; is >> x; a = ModInt(x); return (is); } }; using modint = ModInt; constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template struct NTT{ static constexpr int md = bmds(X); static constexpr int rt = brts(X); using M = ModInt; vector< vector > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i &as,bool f){ int n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i multiply(vector as,vector bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz multiply(vector as,vector bs){ vector am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector cm=multiply(am,bm); vector cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].x; return cs; } }; template constexpr int NTT::md; template constexpr int NTT::rt; int n,q; void solve(){ cin >> n >> q; vector f={1}; NTT<2> ntt; rep(i,n){ int a;cin >> a; vector s={1,a-1}; f=ntt.multiply(f,s); } rep(i,q){ int b;cin >> b; cout << f[n-b] << endl; } } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(50); solve(); }