/** * author: otera **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; //#define int long long typedef long long ll; typedef unsigned long long ul; typedef unsigned int ui; typedef long double ld; const int inf=1e9+7; const ll INF=1LL<<60 ; const ll mod=1e9+7 ; #define rep(i,n) for(int i=0;i=0;i--) #define Rep(i,sta,n) for(int i=sta;i=1;i--) #define Rep1(i,sta,n) for(int i=sta;i<=n;i++) typedef complex Point; const ld eps = 1e-8; typedef pair P; typedef pair LDP; typedef pair LP; #define fr first #define sc second #define all(c) c.begin(),c.end() #define pb push_back #define debug(x) cerr << #x << " = " << (x) << endl; template inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } struct ComplexNumber { double real, imag; inline ComplexNumber& operator = (const ComplexNumber &c) {real = c.real; imag = c.imag; return *this;} friend inline ostream& operator << (ostream &s, const ComplexNumber &c) {return s<<'<'<';} }; inline ComplexNumber operator + (const ComplexNumber &x, const ComplexNumber &y) { return {x.real + y.real, x.imag + y.imag}; } inline ComplexNumber operator - (const ComplexNumber &x, const ComplexNumber &y) { return {x.real - y.real, x.imag - y.imag}; } inline ComplexNumber operator * (const ComplexNumber &x, const ComplexNumber &y) { return {x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real}; } inline ComplexNumber operator * (const ComplexNumber &x, double a) { return {x.real * a, x.imag * a}; } inline ComplexNumber operator / (const ComplexNumber &x, double a) { return {x.real / a, x.imag / a}; } const int MAX = 1<<18; // must be 2^n ComplexNumber AT[MAX], BT[MAX], CT[MAX]; struct FFT { void DTM(ComplexNumber F[], bool inv) { int N = MAX; for (int t = N; t >= 2; t >>= 1) { double ang = acos(-1.0)*2/t; for (int i = 0; i < t/2; i++) { ComplexNumber w = {cos(ang*i), sin(ang*i)}; if (inv) w.imag = -w.imag; for (int j = i; j < N; j += t) { ComplexNumber f1 = F[j] + F[j+t/2]; ComplexNumber f2 = (F[j] - F[j+t/2]) * w; F[j] = f1; F[j+t/2] = f2; } } } for (int i = 1, j = 0; i < N; i++) { for (int k = N >> 1; k > (j ^= k); k >>= 1); if (i < j) swap(F[i], F[j]); } } // C is A*B void mult(long long A[], long long B[], long long C[]) { for (int i = 0; i < MAX; ++i) AT[i] = {(double)A[i], 0.0}; for (int i = 0; i < MAX; ++i) BT[i] = {(double)B[i], 0.0}; DTM(AT, false); DTM(BT, false); for (int i = 0; i < MAX; ++i) CT[i] = AT[i] * BT[i]; DTM(CT, true); for (int i = 0; i < MAX; ++i) { CT[i] = CT[i] / MAX; C[i] = (long long)(CT[i].real + 0.5); } } }; void solve() { int l, m, n; cin >> l >> m >> n; static ll A[MAX] = {0}, B[MAX] = {0}, C[MAX] = {0}; rep(i, l) { int x; cin >> x; A[x] ++; } rep(i, m) { int x; cin >> x; B[n - x] ++; } int q; cin >> q; FFT fft; fft.mult(A, B, C); rep(i, q) { cout << C[n + i] << endl; } } signed main() { ios::sync_with_stdio(false); cin.tie(0); //cout << fixed << setprecision(10); //int t; cin >> t; rep(i, t)solve(); solve(); return 0; }