import bisect class UnionFind: """ class UnionFind https://note.nkmk.me/python-union-find/ order O(log(n)) n = the number of elements parents = the list that contains "parents" of x. be careful that it doesn't contain "root" of x. """ def __init__(self, n): """ make UnionFind :param n: the number of elements """ self.n = n self.parents = [-1] * n def find(self, x): """ :param x: an element :return: the root containing x """ if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): """ :param x, y: an element """ # root x = self.find(x) y = self.find(y) if x == y: # already same group so do nothing return if self.parents[x] > self.parents[y]: # the root should be min of group x, y = y, x # remind that x, y is the root, x < y, then, y unions to x. self.parents[x] += self.parents[y] # and then y's parent is x. self.parents[y] = x def size(self, x): # return the size of group return -self.parents[self.find(x)] def same(self, x, y): # return whether the x, y are in same group return self.find(x) == self.find(y) def members(self, x): # return members of group root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): # return all roots return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): # return how many groups return len(self.roots()) def all_group_members(self): # return all members of all groups return {r: self.members(r) for r in self.roots()} n,a,b = map(int,input().split()) x = list(map(int,input().split())) x.sort() union = UnionFind(n) for i in range(n): targ1 = bisect.bisect_right(x, x[i]+b) targ2 = bisect.bisect_left(x, x[i]+a) targ3 = bisect.bisect_right(x, x[i]-a) targ4 = bisect.bisect_left(x, x[i]-b) if targ1 - targ2 > 0: for j in range(targ2, targ1): union.union(i, j) if targ3 - targ4 > 0: for j in range(targ4, targ3): union.union(i, j) for i in range(n): print(union.size(i))