/* URL: https://yukicoder.me/problems/no/1170 */ package main import ( "bufio" "fmt" "io" "math" "os" "strconv" ) /*******************************************************************/ var ( n, a, b int X []int ) func main() { n, a, b = ReadInt3() X = ReadIntSlice(n) f := func(lv, rv T) T { return lv + rv } g := func(to T, from E) T { return to + T(from) } h := func(to, from E) E { return to + from } p := func(e E, length int) E { return e * E(length) } ti := T(0) ei := E(0) lst := NewLazySegmentTree(n, f, g, h, p, ti, ei) for i := 0; i < n; i++ { lst.Set(i, 1) } lst.Build() // D := make([]int, n) for i := 0; i < n; i++ { x := X[i] T := X[i+1:] mini := BinarySearch(len(T), -1, func(mid int) bool { return T[mid]-x >= a }) maxi := BinarySearch(-1, len(T), func(mid int) bool { return T[mid]-x <= b }) PrintfDebug("mini: %d, maxi: %d\n", mini+i+1, maxi+i+1) if maxi < mini { // continue } else { // D[i] = maxi - mini + 1 // val := lst.Query(i, i+1) lst.Update(mini+(i+1), maxi+(i+1)+1, E(1)) } // if i == 0 { // continue // } T = X[:i] maxi = BinarySearch(-1, len(T), func(mid int) bool { return x-T[mid] >= a }) mini = BinarySearch(len(T), -1, func(mid int) bool { return x-T[mid] <= b }) if maxi < mini { } else { lst.Update(mini, maxi+1, E(1)) } } ff := func(lv, rv T) T { return T(math.Max(float64(lv), float64(rv))) } gg := func(to T, from E) T { return T(from) } hh := func(to, from E) E { return from } pp := func(e E, length int) E { return e } titi := T(0) eiei := E(0) lst2 := NewLazySegmentTree(n, ff, gg, hh, pp, titi, eiei) for i := 0; i < n; i++ { // fmt.Println(D[i] + int(lst.Query(i, i+1))) // fmt.Println(int(lst.Query(i, i+1))) lst2.Set(i, lst.Query(i, i+1)) } lst2.Build() for i := 0; i < n; i++ { ans := 0 x := X[i] T := X[i+1:] mini := BinarySearch(len(T), -1, func(mid int) bool { return T[mid]-x >= a }) maxi := BinarySearch(-1, len(T), func(mid int) bool { return T[mid]-x <= b }) PrintfDebug("mini: %d, maxi: %d\n", mini+i+1, maxi+i+1) if maxi < mini { } else { // lst.Update(mini+(i+1), maxi+(i+1)+1, E(1)) ChMax(&ans, int(lst2.Query(mini+(i+1), maxi+(i+1)+1))) } T = X[:i] maxi = BinarySearch(-1, len(T), func(mid int) bool { return x-T[mid] >= a }) mini = BinarySearch(len(T), -1, func(mid int) bool { return x-T[mid] <= b }) if maxi < mini { } else { // lst.Update(mini, maxi+1, E(1)) ChMax(&ans, int(lst2.Query(mini, maxi+1))) } ChMax(&ans, int(lst2.Query(i, i+1))) fmt.Println(ans) } } // ChMax accepts a pointer of integer and a target value. // If target value is LARGER than the first argument, // then the first argument will be updated by the second argument. func ChMax(updatedValue *int, target int) bool { if *updatedValue < target { *updatedValue = target return true } return false } // Assumption: T == E type T int // (T, f): Monoid type E int // (E, h): Operator Monoid type LazySegmentTree struct { sz int data []T lazy []E f func(lv, rv T) T // T <> T -> T g func(to T, from E) T // T <> E -> T (assignment operator) h func(to, from E) E // E <> E -> E (assignment operator) p func(e E, length int) E // E <> N -> E ti T ei E } func NewLazySegmentTree( n int, f func(lv, rv T) T, g func(to T, from E) T, h func(to, from E) E, p func(e E, length int) E, ti T, ei E, ) *LazySegmentTree { lst := new(LazySegmentTree) lst.f, lst.g, lst.h, lst.p = f, g, h, p lst.ti, lst.ei = ti, ei lst.sz = 1 for lst.sz < n { lst.sz *= 2 } lst.data = make([]T, 2*lst.sz-1) lst.lazy = make([]E, 2*lst.sz-1) for i := 0; i < 2*lst.sz-1; i++ { lst.data[i] = lst.ti lst.lazy[i] = lst.ei } return lst } func (lst *LazySegmentTree) Set(k int, x T) { lst.data[k+(lst.sz-1)] = x } func (lst *LazySegmentTree) Build() { for i := lst.sz - 2; i >= 0; i-- { lst.data[i] = lst.f(lst.data[2*i+1], lst.data[2*i+2]) } } func (lst *LazySegmentTree) propagate(k, length int) { if lst.lazy[k] != lst.ei { if k < lst.sz-1 { lst.lazy[2*k+1] = lst.h(lst.lazy[2*k+1], lst.lazy[k]) lst.lazy[2*k+2] = lst.h(lst.lazy[2*k+2], lst.lazy[k]) } lst.data[k] = lst.g(lst.data[k], lst.p(lst.lazy[k], length)) lst.lazy[k] = lst.ei } } func (lst *LazySegmentTree) Update(a, b int, x E) T { return lst.update(a, b, x, 0, 0, lst.sz) } func (lst *LazySegmentTree) update(a, b int, x E, k, l, r int) T { lst.propagate(k, r-l) if r <= a || b <= l { return lst.data[k] } if a <= l && r <= b { lst.lazy[k] = lst.h(lst.lazy[k], x) lst.propagate(k, r-l) return lst.data[k] } lv := lst.update(a, b, x, 2*k+1, l, (l+r)/2) rv := lst.update(a, b, x, 2*k+2, (l+r)/2, r) lst.data[k] = lst.f(lv, rv) return lst.data[k] } func (lst *LazySegmentTree) Query(a, b int) T { return lst.query(a, b, 0, 0, lst.sz) } func (lst *LazySegmentTree) query(a, b, k, l, r int) T { lst.propagate(k, r-l) if r <= a || b <= l { return lst.ti } if a <= l && r <= b { return lst.data[k] } lv := lst.query(a, b, 2*k+1, l, (l+r)/2) rv := lst.query(a, b, 2*k+2, (l+r)/2, r) return lst.f(lv, rv) } func (lst *LazySegmentTree) Get(k int) T { return lst.Query(k, k+1) } func BinarySearch(initOK, initNG int, isOK func(mid int) bool) (ok int) { ng := initNG ok = initOK for int(math.Abs(float64(ok-ng))) > 1 { mid := (ok + ng) / 2 if isOK(mid) { ok = mid } else { ng = mid } } return ok } const ( // General purpose MOD = 1000000000 + 7 // MOD = 998244353 ALPHABET_NUM = 26 INF_INT64 = math.MaxInt64 INF_BIT60 = 1 << 60 INF_INT32 = math.MaxInt32 INF_BIT30 = 1 << 30 NIL = -1 // for dijkstra, prim, and so on WHITE = 0 GRAY = 1 BLACK = 2 ) /*******************************************************************/ /********** bufio setting **********/ func init() { // bufio.ScanWords <---> bufio.ScanLines ReadString = newReadString(os.Stdin, bufio.ScanWords) stdout = bufio.NewWriter(os.Stdout) } /********** FAU standard libraries **********/ //fmt.Sprintf("%b\n", 255) // binary expression /********** I/O usage **********/ //str := ReadString() //i := ReadInt() //X := ReadIntSlice(n) //S := ReadRuneSlice() //a := ReadFloat64() //A := ReadFloat64Slice(n) //str := ZeroPaddingRuneSlice(num, 32) //str := PrintIntsLine(X...) /*********** Input ***********/ var ( // ReadString returns a WORD string. ReadString func() string stdout *bufio.Writer ) func newReadString(ior io.Reader, sf bufio.SplitFunc) func() string { r := bufio.NewScanner(ior) r.Buffer(make([]byte, 1024), int(1e+9)) // for Codeforces r.Split(sf) return func() string { if !r.Scan() { panic("Scan failed") } return r.Text() } } // ReadInt returns an integer. func ReadInt() int { return int(readInt64()) } func ReadInt2() (int, int) { return int(readInt64()), int(readInt64()) } func ReadInt3() (int, int, int) { return int(readInt64()), int(readInt64()), int(readInt64()) } func ReadInt4() (int, int, int, int) { return int(readInt64()), int(readInt64()), int(readInt64()), int(readInt64()) } // ReadInt64 returns as integer as int64. func ReadInt64() int64 { return readInt64() } func ReadInt64_2() (int64, int64) { return readInt64(), readInt64() } func ReadInt64_3() (int64, int64, int64) { return readInt64(), readInt64(), readInt64() } func ReadInt64_4() (int64, int64, int64, int64) { return readInt64(), readInt64(), readInt64(), readInt64() } func readInt64() int64 { i, err := strconv.ParseInt(ReadString(), 0, 64) if err != nil { panic(err.Error()) } return i } // ReadIntSlice returns an integer slice that has n integers. func ReadIntSlice(n int) []int { b := make([]int, n) for i := 0; i < n; i++ { b[i] = ReadInt() } return b } // ReadInt64Slice returns as int64 slice that has n integers. func ReadInt64Slice(n int) []int64 { b := make([]int64, n) for i := 0; i < n; i++ { b[i] = ReadInt64() } return b } // ReadFloat64 returns an float64. func ReadFloat64() float64 { return float64(readFloat64()) } func readFloat64() float64 { f, err := strconv.ParseFloat(ReadString(), 64) if err != nil { panic(err.Error()) } return f } // ReadFloatSlice returns an float64 slice that has n float64. func ReadFloat64Slice(n int) []float64 { b := make([]float64, n) for i := 0; i < n; i++ { b[i] = ReadFloat64() } return b } // ReadRuneSlice returns a rune slice. func ReadRuneSlice() []rune { return []rune(ReadString()) } /*********** Output ***********/ // PrintIntsLine returns integers string delimited by a space. func PrintIntsLine(A ...int) string { res := []rune{} for i := 0; i < len(A); i++ { str := strconv.Itoa(A[i]) res = append(res, []rune(str)...) if i != len(A)-1 { res = append(res, ' ') } } return string(res) } // PrintIntsLine returns integers string delimited by a space. func PrintInts64Line(A ...int64) string { res := []rune{} for i := 0; i < len(A); i++ { str := strconv.FormatInt(A[i], 10) // 64bit int version res = append(res, []rune(str)...) if i != len(A)-1 { res = append(res, ' ') } } return string(res) } // PrintfBufStdout is function for output strings to buffered os.Stdout. // You may have to call stdout.Flush() finally. func PrintfBufStdout(format string, a ...interface{}) { fmt.Fprintf(stdout, format, a...) } /*********** Debugging ***********/ // PrintfDebug is wrapper of fmt.Fprintf(os.Stderr, format, a...) func PrintfDebug(format string, a ...interface{}) { fmt.Fprintf(os.Stderr, format, a...) } // ZeroPaddingRuneSlice returns binary expressions of integer n with zero padding. // For debugging use. func ZeroPaddingRuneSlice(n, digitsNum int) []rune { sn := fmt.Sprintf("%b", n) residualLength := digitsNum - len(sn) if residualLength <= 0 { return []rune(sn) } zeros := make([]rune, residualLength) for i := 0; i < len(zeros); i++ { zeros[i] = '0' } res := []rune{} res = append(res, zeros...) res = append(res, []rune(sn)...) return res }