#include using namespace std; #define rep(i, n) for(int i = 0; i < n; i++) #define rep2(i, x, n) for(int i = x; i <= n; i++) #define rep3(i, x, n) for(int i = x; i >= n; i--) #define elif else if #define sp(x) fixed << setprecision(x) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define sz(x) (int)x.size() using ll = long long; using ld = long double; using pii = pair; using pil = pair; using pli = pair; using pll = pair; const ll MOD = 1e9+7; //const ll MOD = 998244353; const int inf = (1<<30)-1; const ll INF = (1LL<<60)-1; const ld EPS = 1e-10; template bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;}; template bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;}; template struct Mod_Int{ ll x; Mod_Int() {} Mod_Int(ll y) : x (y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} Mod_Int &operator += (const Mod_Int &p){ x = (x + p.x) % mod; return *this; } Mod_Int &operator -= (const Mod_Int &p){ x = (x + mod - p.x) % mod; return *this; } Mod_Int &operator *= (const Mod_Int &p){ x = (x * p.x) % mod; return *this; } Mod_Int &operator /= (const Mod_Int &p){ *this *= p.inverse(); return *this; } Mod_Int &operator ^= (ll k){ Mod_Int ret = 1; while(k){ if(k&1) ret *= *this; *this *= *this, k >>= 1; } swap(x, ret.x); return *this; } Mod_Int &operator ++ () {return *this += Mod_Int(1);} Mod_Int operator ++ (int){ Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator -- () {return *this -= Mod_Int(1);} Mod_Int operator -- (int){ Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator - () const {return Mod_Int(-x);} Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;} Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;} Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;} Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;} Mod_Int operator ^ (ll k) const {return Mod_Int(*this) ^= k;} bool operator == (const Mod_Int &p) const {return x == p.x;} bool operator != (const Mod_Int &p) const {return x != p.x;} Mod_Int inverse() const {return *this ^ (mod-2);} friend ostream &operator << (ostream &os, const Mod_Int &p){ return os << p.x; } friend istream &operator >> (istream &is, Mod_Int &p){ ll a; is >> a; p = Mod_Int(a); return is; } }; using mint = Mod_Int; const int MAX_N = 1000000; mint fac[MAX_N+1], ifac[MAX_N+1]; void init(){ fac[0] = 1; rep2(i, 1, MAX_N){ fac[i] = fac[i-1]*i; } ifac[MAX_N] = fac[MAX_N].inverse(); rep3(i, MAX_N, 1){ ifac[i-1] = ifac[i]*i; } } mint comb(int n, int k){ return fac[n]*ifac[n-k]*ifac[k]; } mint perm(int n, int k){ return fac[n]*ifac[n-k]; } ll mpow(ll x, ll n, ll m){ ll ret = 1; while(n){ if(n&1) ret *= x, ret %= m; x *= x, x %= m; n >>= 1; } return ret; } int main(){ int p; cin >> p; mint ten = 10; ten ^= p-1; cout << (ten - mint(mpow(10, p-1, p)))/mint(p) << endl; }