#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") #endif #include using namespace std; using ll = long long; using ld = long double; using VI = vector; using VV = vector; using VS = vector; using PII = pair; // tourist set template string to_string(pair p); template string to_string(tuple p); template string to_string(tuple p); string to_string(const string& s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string) s); } string to_string(bool b) { return (b ? "true" : "false"); } string to_string(vector v) { bool first = true; string res = "{"; for (int i = 0; i < static_cast(v.size()); i++) { if (!first) { res += ", "; } first = false; res += to_string(v[i]); } res += "}"; return res; } template string to_string(bitset v) { string res = ""; for (size_t i = 0; i < N; i++) { res += static_cast('0' + v[i]); } return res; } template string to_string(A v) { bool first = true; string res = "{"; for (const auto &x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } template string to_string(pair p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template string to_string(tuple p) { return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ")"; } template string to_string(tuple p) { return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " + to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")"; } void debug_out() { cerr << '\n'; } template void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } #ifdef LOCAL #define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #else #define debug(...) 42 #endif // tourist set end templatebool chmax(T &a, const T &b) { if (abool chmin(T &a, const T &b) { if (b()) #define MP make_pair #define p_yes() p("YES") #define p_no() p("NO") #define possible() p("Possible") #define impossible() p("Impossible") ll SUM(VI& V){ return accumulate(ALL(V), 0LL); } ll MIN(VI& V){return *min_element(ALL(V));} ll MAX(VI& V){return *max_element(ALL(V));} void print_vector(VI& V){ ll n = V.size(); rep(i, n){ if(i) cout << ' '; cout << V[i]; } cout << endl; } ll gcd(ll a,ll b){ if(b == 0) return a; return gcd(b,a%b); } ll lcm(ll a,ll b){ ll g = gcd(a,b); return a / g * b; } // long double using ld = long double; #define EPS (1e-14) #define equals(a,b) (fabs((a)-(b)) < EPS) void no(){p_no(); exit(0);} void yes(){p_yes(); exit(0);} const ll mod = 1e9 + 7; const ll inf = 1e18; const double PI = acos(-1); // snuke's mint // auto mod int // https://youtu.be/L8grWxBlIZ4?t=9858 // https://youtu.be/ERZuLAxZffQ?t=4807 : optimize // https://youtu.be/8uowVvQ_-Mo?t=1329 : division // const int mod = 1000000007; struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%mod+mod)%mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res+=a; } mint operator-(const mint a) const { mint res(*this); return res-=a; } mint operator*(const mint a) const { mint res(*this); return res*=a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(mod-2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res/=a; } }; // for codeforces void solve(){ ll N; cin>>N; VI A(N); rep(i, N){ cin >> A[i]; } } // Matrix (long double ver) using Mat = vector>; // Matrix Library Mat mat_mul(const Mat& x, const Mat& y){ int a = x.size(); int b = x[0].size(); int c = y[0].size(); Mat z(a, vector(c, 0)); FOR(i, 0, a){ FOR(j, 0, c){ FOR(k, 0, b){ z[i][j] += x[i][k] * y[k][j]; //z[i][j] %= mod; // 必要であれば } } } return z; } Mat mat_pow(const Mat& x, ll k){ int n = x.size(); Mat y(n, vector(n, 0)); FOR(i, 0, n){ y[i][i] = 1; } auto z = x; if(k==0) return y; if(k==1) return z; if(k%2==0){ return mat_pow(mat_mul(x, x), k/2); }else{ return mat_mul(x, mat_pow(x, k-1)); } } void print_mat(Mat x){ ll H = x.size(); FOR(i, 0, H){ for(ld v : x[i]){ cout << v << ' '; } cout << endl; } } ld delta(Mat A){ ld a = A[0][0]; ld b = A[0][1]; ld c = A[1][0]; ld d = A[1][1]; return a*d-b*c; } // 逆行列 Mat inv(Mat A){ //print_mat(A); ld D = delta(A); ld a = A[0][0]; ld b = A[0][1]; ld c = A[1][0]; ld d = A[1][1]; return { {d/D, -b/D}, {-c/D, a/D} }; } int main(){ cin.tie(0); ios::sync_with_stdio(false); // input ld a,b,c,d,e,f; cin>>a>>b>>c>>d>>e>>f; Mat A = { {a,b}, {d,e} }; Mat C = { {c}, {f} }; auto Inv = inv(A); auto Ans = mat_mul(Inv, C); cout << setprecision(20); ld x = Ans[0][0]; ld y = Ans[1][0]; p2(x,y); return 0; }