import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } // Link-Cut Tree // Modify val and update to the data needed class Tree { Tree l, r, p; int size; int id; // int[] val; long here, num, sum; this(int id) { l = r = p = null; size = 1; this.id = id; // val = [id]; num = here; sum = 0; } void update() { size = (l ? l.size : 0) + 1 + (r ? r.size : 0); // val = (l ? l.val : []) ~ [id] ~ (r ? r.val : []); } // ? void changeP(Tree u) { debug { writefln("%s.changeP %s -> %s", id, p ? p.id.to!string : "null", u ? u.id.to!string : "null"); } if (p) { p.num -= num; p.sum -= (num + sum); } p = u; if (u) { u.num += num; u.sum += (num + sum); } } bool isRoot() const { return (!p || (p.l != this && p.r != this)); } void rotate() { // if (p.l == this) { if (r) { r.p = p; } p.l = r; r = p; } if (p.l == this) { if (r) { r.changeP(p); } p.l = r; r = p; } // else if (p.r == this) { if (l) { l.p = p; } p.r = l; l = p; } else if (p.r == this) { if (l) { l.changeP(p); } p.r = l; l = p; } Tree pp = p.p; if (pp) { if (pp.l == p) pp.l = this; else if (pp.r == p) pp.r = this; } // p.update(); p.p = this; p = pp; auto q = p; p.update(); changeP(pp); q.changeP(this); } void splay() { for (; !isRoot(); rotate()) { if (!p.isRoot()) ((p.l == this) == (p.p.l == p)) ? p.rotate() : rotate(); } update(); } // Make the path from v to the root solid // Return the node where it entered the last solid path Tree expose() { Tree u = this, v = null; for (; u; u = u.p) { u.splay(); u.r = v; u.update(); v = u; } splay(); return v; } // parent of this := u void link(Tree u) { // expose(); u.expose(); p = u; u.r = this; u.update(); expose(); u.expose(); changeP(u); u.r = this; u.update(); } // parent of this := null void cut() { // expose(); l.p = null; l = null; update(); expose(); l.changeP(null); l = null; update(); } // the root of the tree this belongs Tree root() { expose(); for (Tree u = this; ; u = u.l) if (!u.l) { u.splay(); return u; } } // LCA of this and u // Assume this.root == u.root Tree lca(Tree u) { expose(); return u.expose(); } // ([child of LCA, ..., this], [LCA, ..., u]) // Assume this.root == u.root /* import std.typecons : Tuple, tuple; Tuple!(int[], int[]) path(Tree u) { expose(); Tree v = u.expose(); splay(); v.splay(); auto pathT = (v == this) ? [] : ((l ? l.val : []) ~ [this.id]); auto pathU = [v.id] ~ (v.r ? v.r.val : []); return tuple(pathT, pathU); } */ } void print(in Tree[] nodes) { import std.stdio : write, writeln; import std.string : format; string dfs(in Tree u) { // return format("<%s%s(%s, %s)%s>", return format("<%s%s(%s, %s, %s,%s)%s>", u.l ? (dfs(u.l) ~ " ") : "", // u.id, u.size, u.val, u.id, u.size, u.here, u.num, u.sum, u.r ? (" " ~ dfs(u.r)) : ""); } foreach (u; nodes) { if (u.isRoot()) { write("| "); if (u.p) write(u.p.id, " "); write("<- ", u.id, ": "); writeln(dfs(u)); } } } void main() { try { for (; ; ) { const N = readInt(); const K = readInt(); const Q = readInt(); auto C = new int[K]; foreach (k; 0 .. K) { C[k] = readInt() - 1; } auto A = new int[N - 1]; auto B = new int[N - 1]; foreach (i; 0 .. N - 1) { A[i] = readInt() - 1; B[i] = readInt() - 1; } auto typ = new int[Q]; auto P = new int[Q]; auto D = new int[Q]; auto E = new int[Q]; foreach (q; 0 .. Q) { typ[q] = readInt(); switch (typ[q]) { case 1: { P[q] = readInt() - 1; D[q] = readInt() - 1; } break; case 2: { E[q] = readInt() - 1; } break; default: assert(false); } } auto nodes = new Tree[N]; foreach (u; 0 .. N) { nodes[u] = new Tree(u); } foreach (k; 0 .. K) { nodes[C[k]].here += 1; nodes[C[k]].num += 1; } debug { nodes.print; writeln("----"); } foreach (i; 0 .. N - 1) { nodes[A[i]].link(nodes[B[i]]); debug { nodes.print; writeln("----"); } } auto cs = C.dup; foreach (q; 0 .. Q) { switch (typ[q]) { case 1: { const k = P[q]; nodes[cs[k]].expose; nodes[cs[k]].here -= 1; nodes[cs[k]].num -= 1; cs[k] = D[q]; nodes[cs[k]].expose; nodes[cs[k]].here += 1; nodes[cs[k]].num += 1; } break; case 2: { nodes[E[q]].expose; writeln(nodes[E[q]].sum); } break; default: assert(false); } debug { nodes.print; writeln("----"); } } } } catch (EOFException e) { } }