using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using System.IO;
using System.Text;
using System.Linq;
using E = System.Linq.Enumerable;
using System.Threading;
using System.Numerics;
internal partial class Solver {
public void Run() {
var n = ni();
var m = ni();
var a = nl();
var b = nl();
var mod = 998244353;
ModInt.SetModValue(mod);
var dp = new ModInt[m];
var B = new Binomial(m * 2 + 1, mod);
for (int i = 0; i <= b; i++) {
var to = (n - 1) * a;
var rem = i - to;
if (rem < 0) continue;
dp[i] = B.H(n - 1, (int)rem);
}
for (int i = 0; i + 1 < dp.Length; i++) {
dp[i + 1] += dp[i];
}
ModInt ans = 0;
for (int i = 0; i < m; i++) {
var rem = m - i - 1;
ans += dp[rem];
}
for (int i = 0; i < n; i++) {
ans *= i + 1;
}
cout.WriteLine(ans);
}
}
public class Binomial {
private readonly long[] factorial;
private readonly long[] inverseFactorial;
private readonly long[] inverse;
private readonly int mod;
public Binomial(int size, int primeMod) {
size++;
factorial = new long[size];
inverseFactorial = new long[size];
inverse = new long[size];
mod = primeMod;
Setup(size);
}
private void Setup(int size) {
factorial[0] = factorial[1] = 1;
inverseFactorial[0] = inverseFactorial[1] = 1;
inverse[1] = 1;
for (int i = 2; i < size; i++) {
factorial[i] = factorial[i - 1] * i % mod;
inverse[i] = (mod - (mod / i) * inverse[mod % i] % mod);
inverseFactorial[i] = inverseFactorial[i - 1] * inverse[i] % mod;
}
}
public long C(int s, int t) {
if (s < 0 || t < 0 || s < t) {
return 0;
}
if (t == 0 || s == t) {
return 1;
}
if (s >= mod) {
return C(s % mod, t % mod) * C(s / mod, t / mod) % mod; // Lucas' theorem
}
return factorial[s] * inverseFactorial[t] % mod * inverseFactorial[s - t] % mod;
}
public long this[int s, int t] {
get {
return C(s, t);
}
}
public long P(int s, int t) {
if (s < 0 || t < 0 || s < t) return 0;
return factorial[s] * inverseFactorial[s - t] % mod;
}
///
/// s 種類のものから重複を許して t 個選ぶ場合の数
///
///
public long H(int s, int t) {
if (s < 0 || t < 0) return 0;
if (s == 0 && t == 0) return 1;
return C(s + t - 1, t);
}
public long H1(int s, int t) {
return H(s, t - s);
}
}
public struct ModInt : IEquatable {
private static int mod = 0;
private long _value;
public ModInt(long x) {
_value = x;
Normalize();
}
private static long RegularMod(long x, int mod) {
if (x >= mod) {
if (x < 2 * mod) {
return x - mod;
}
return x % mod;
}
if (x >= 0) {
return x;
}
x = mod - RegularMod(-x, mod);
if (x == mod) {
return 0;
}
return x;
}
public static int SetModValue(int m) {
return mod = m;
}
private void Normalize() {
_value = RegularMod(_value, mod);
}
public override string ToString() {
return _value.ToString(CultureInfo.InvariantCulture);
}
public int ToInt() {
return (int)_value;
}
public static bool operator ==(ModInt c1, ModInt c2) {
return c1._value == c2._value;
}
public static bool operator !=(ModInt c1, ModInt c2) {
return !(c1 == c2);
}
public static ModInt operator +(ModInt x, ModInt y) {
return new ModInt(x._value + y._value);
}
public static ModInt operator -(ModInt x, ModInt y) {
return new ModInt(x._value - y._value);
}
public static ModInt operator -(ModInt x) {
return new ModInt(-x._value);
}
public static ModInt operator *(ModInt x, ModInt y) {
return new ModInt(x._value * y._value);
}
public static ModInt operator /(ModInt x, ModInt y) {
return new ModInt(x._value * Inverse(y._value, mod));
}
public static ModInt operator ++(ModInt x) {
return x + 1;
}
public static ModInt operator --(ModInt x) {
return x - 1;
}
public static ModInt Pow(ModInt x, long n) {
ModInt r = 1;
while (n > 0) {
if ((n & 1) != 0) {
r *= x;
}
x *= x;
n >>= 1;
}
return r;
}
private static long ExtendedGcd(long a, long b, ref long x, ref long y) {
if (b == 0) {
x = 1; y = 0;
return a;
} else {
var d = ExtendedGcd(b, a % b, ref y, ref x);
y -= a / b * x;
return d;
}
}
private static long Inverse(long a, long mod) {
long x = 0, y = 0;
if (ExtendedGcd(a, mod, ref x, ref y) == 1) {
return (x + mod) % mod;
} else {
throw new Exception("Invalid inverse " + a + " " + mod);
}
}
public static implicit operator ModInt(long x) {
return new ModInt(x);
}
public override bool Equals(object obj) {
if (obj == null) {
return false;
}
return _value.Equals(((ModInt)obj)._value);
}
public override int GetHashCode() {
return _value.GetHashCode();
}
public bool Equals(ModInt other) {
return _value.Equals(other._value);
}
}
// PREWRITEN CODE BEGINS FROM HERE
static public class StringExtensions {
static public string JoinToString(this IEnumerable source, string separator = " ") {
return string.Join(separator, source);
}
}
internal partial class Solver : Scanner {
static readonly int? StackSizeInMebiByte = null; //50;
public static void StartAndJoin(Action action, int maxStackSize) {
var thread = new Thread(new ThreadStart(action), maxStackSize);
thread.Start();
thread.Join();
}
public static void Main() {
#if LOCAL
byte[] inputBuffer = new byte[1000000];
var inputStream = Console.OpenStandardInput(inputBuffer.Length);
using (var reader = new StreamReader(inputStream, Console.InputEncoding, false, inputBuffer.Length)) {
Console.SetIn(reader);
new Solver(Console.In, Console.Out).Run();
}
#else
Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false });
if (StackSizeInMebiByte.HasValue) {
StartAndJoin(() => new Solver(Console.In, Console.Out).Run(), StackSizeInMebiByte.Value * 1024 * 1024);
} else {
new Solver(Console.In, Console.Out).Run();
}
Console.Out.Flush();
#endif
}
#pragma warning disable IDE0052
private readonly TextReader cin;
private readonly TextWriter cout;
private readonly TextWriter cerr;
#pragma warning restore IDE0052
public Solver(TextReader reader, TextWriter writer)
: base(reader) {
cin = reader;
cout = writer;
cerr = Console.Error;
}
public Solver(string input, TextWriter writer)
: this(new StringReader(input), writer) {
}
#pragma warning disable IDE1006
#pragma warning disable IDE0051
private int ni() { return NextInt(); }
private int[] ni(int n) { return NextIntArray(n); }
private long nl() { return NextLong(); }
private long[] nl(int n) { return NextLongArray(n); }
private double nd() { return NextDouble(); }
private double[] nd(int n) { return NextDoubleArray(n); }
private string ns() { return Next(); }
private string[] ns(int n) { return NextArray(n); }
#pragma warning restore IDE1006
#pragma warning restore IDE0051
}
#if DEBUG
internal static class LinqPadExtension {
public static string TextDump(this T obj) {
if (obj is IEnumerable) return (obj as IEnumerable).Cast