#![allow(unused_imports)] #![allow(non_snake_case)] use std::cmp::*; use std::collections::*; use std::io::Write; #[allow(unused_macros)] macro_rules! debug { ($($e:expr),*) => { #[cfg(debug_assertions)] $({ let (e, mut err) = (stringify!($e), std::io::stderr()); writeln!(err, "{} = {:?}", e, $e).unwrap() })* }; } fn to_index(idx: usize, res: usize) -> usize { res + idx * 2 } fn main() { let v = read_vec::(); let (n, m, p) = (v[0] as usize, v[1] as usize, v[2]); //let p = min(p, 1000000 + p % 2) as usize; let v = read_vec::(); let (s, g) = (v[0] - 1, v[1] - 1); let mut edges = vec![vec![]; 2 * n]; for i in 0..m { let v = read_vec::(); let (u, v) = (v[0] - 1, v[1] - 1); edges[to_index(u, 0)].push(Edge { to: to_index(v, 1), cost: 1, }); edges[to_index(v, 0)].push(Edge { to: to_index(u, 1), cost: 1, }); edges[to_index(u, 1)].push(Edge { to: to_index(v, 0), cost: 1, }); edges[to_index(v, 1)].push(Edge { to: to_index(u, 0), cost: 1, }); } let from_s = solve(&edges, to_index(s, 0)); let from_g = solve(&edges, to_index(g, 0)); if from_s[to_index(g, p as usize % 2)] > p { println!("-1"); return; } let mut answers = vec![]; for i in 0..n { if from_s[to_index(i, 0)] + from_g[to_index(i, p as usize % 2)] <= p { answers.push(i); } else if from_s[to_index(i, 1)] + from_g[to_index(i, 1 - (p as usize % 2))] <= p { answers.push(i); } } println!("{}", answers.len()); for ans in answers { println!("{}", ans + 1); } } fn read() -> T { let mut s = String::new(); std::io::stdin().read_line(&mut s).ok(); s.trim().parse().ok().unwrap() } fn read_vec() -> Vec { read::() .split_whitespace() .map(|e| e.parse().ok().unwrap()) .collect() } use std::cmp::Ordering; use std::collections::BinaryHeap; const INF: i64 = 100000_00000_00000; #[derive(PartialEq, Debug)] struct MinInt { value: i64, } impl Eq for MinInt {} impl PartialOrd for MinInt { fn partial_cmp(&self, other: &Self) -> Option { other.value.partial_cmp(&self.value) } } impl Ord for MinInt { fn cmp(&self, other: &MinInt) -> Ordering { other.value.cmp(&self.value) } } fn make_pair(x: i64, y: usize) -> (MinInt, usize) { (MinInt { value: x }, y) } #[derive(Debug, Clone)] struct Edge { to: usize, cost: i64, } fn solve(edges: &Vec>, start_idx: usize) -> Vec { let num_apexes = edges.len(); let mut d = vec![INF; num_apexes]; d[start_idx] = 0; let mut que = BinaryHeap::new(); que.push(make_pair(0, start_idx)); while let Some((u, v)) = que.pop() { if d[v] < u.value { continue; } for e in &edges[v] { if d[v] != INF && d[e.to] > d[v] + e.cost { d[e.to] = d[v] + e.cost; que.push(make_pair(d[e.to], e.to)); } } } d }