#pragma GCC target ("avx") #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; using ld = long double; #define int long long #define all(a) (a).begin(),(a).end() #define fs first #define sc second #define xx first #define yy second.first #define zz second.second #define H pair #define P pair> #define Q(i,j,k) mkp(i,mkp(j,k)) #define rng(i,s,n) for(int i = (s) ; i < (n) ; i++) #define rep(i,n) rng(i, 0, (n)) #define mkp make_pair #define vec vector #define vi vec #define pb emplace_back #define siz(a) (int)(a).size() #define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end()) #define getidx(b,i) (lower_bound(all(b),(i))-(b).begin()) #define ssp(i,n) (i==(int)(n)-1?"\n":" ") #define ctoi(c) (int)(c-'0') #define itoc(c) (char)(c+'0') #define cyes printf("Yes\n") #define cno printf("No\n") #define cdf(n) int quetimes_=(n);rep(qq123_,quetimes_) #define gcj printf("Case #%lld: ",qq123_+1) #define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read() #define found(a,x) (a.find(x)!=a.end()) //#define endl "\n" constexpr int mod = (ll)1e9 + 7; constexpr int Mod = 998244353; constexpr ld EPS = 1e-10; constexpr ll inf = (ll)3 * 1e18; constexpr int Inf = (ll)15 * 1e8; constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 }; templatebool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } templatebool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } ll read() { ll u, k = scanf("%lld", &u); return u; } string reads() { string s; cin >> s; return s; } H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; } bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; } bool ina(int t, int l, int r) { return l <= t && t < r; } ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; } ll popcount(ll x) { int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++; return sum; } template class csum { vec v; public: csum(vec& a) :v(a) { build(); } csum(){} void init(vec& a) { v = a; build(); } void build() { for (int i = 1; i < v.size(); i++) v[i] += v[i - 1]; } T a(int l, int r) { if (r < l) return 0; return v[r] - (l == 0 ? 0 : v[l - 1]); }//[l,r] T b(int l, int r) { return a(l, r - 1); }//[l,r) T a(pairt) { return a(t.first, t.second); } T b(pairt) { return b(t.first, t.second); } }; class mint { public:ll v; mint(ll v = 0) { s(v % mod + mod); } constexpr static int mod = (ll)1e9 + 7; constexpr static int fn_ = (ll)2e6 + 5; static mint fact[fn_], comp[fn_]; mint pow(int x) const { mint b(v), c(1); while (x) { if (x & 1) c *= b; b *= b; x >>= 1; } return c; } inline mint& s(int vv) { v = vv < mod ? vv : vv - mod; return *this; } inline mint inv()const { return pow(mod - 2); } inline mint operator-()const { return mint() - *this; } inline mint& operator+=(const mint b) { return s(v + b.v); } inline mint& operator-=(const mint b) { return s(v + mod - b.v); } inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; } inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; } inline mint operator+(const mint b) const { return mint(v) += b; } inline mint operator-(const mint b) const { return mint(v) -= b; } inline mint operator*(const mint b) const { return mint(v) *= b; } inline mint operator/(const mint b) const { return mint(v) /= b; } friend ostream& operator<<(ostream& os, const mint& m) { return os << m.v; } friend istream& operator>>(istream& is, mint& m) { int x; is >> x; m = mint(x); return is; } bool operator<(const mint& r)const { return v < r.v; } bool operator>(const mint& r)const { return v > r.v; } bool operator<=(const mint& r)const { return v <= r.v; } bool operator>=(const mint& r)const { return v >= r.v; } bool operator==(const mint& r)const { return v == r.v; } bool operator!=(const mint& r)const { return v != r.v; } explicit operator bool()const { return v; } explicit operator int()const { return v; } mint comb(mint k) { if (k > * this) return mint(); if (!fact[0]) combinit(); if (v >= fn_) { if (k > * this - k) k = *this - k; mint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i); return tmp * comp[k.v]; } return fact[v] * comp[k.v] * comp[v - k.v]; }//nCk mint perm(mint k) { if (k > * this) return mint(); if (!fact[0]) combinit(); if (v >= fn_) { mint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i); return tmp; } return fact[v] * comp[v - k.v]; }//nPk static void combinit() { fact[0] = 1; for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i); comp[fn_ - 1] = fact[fn_ - 1].inv(); for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1); } }; mint mint::fact[fn_], mint::comp[fn_]; //-------------------------------------------------------------- class LCA { #define H pair #define fs first #define sc second int n; H table[400000][25]; vece[400000]; int dep[400000]; public: void init(const int& size) { n = size; for (int i = 0; i <= n; i++) { e[i].clear(); dep[i] = 0; for (int j = 0; j < 25; j++) table[i][j] = H{ -1,-1 }; } } void add_edge(int u, int v, int r) { e[u].pb(H{ v,r }); e[v].pb(H{ u,r }); } void add_edge(int u, int v) { e[u].pb(H{ v,1 }); e[v].pb(H{ u,1 }); } void build(const int st) { dfs(st, -1, 0); for (int j = 0; j < 24; j++)for (int i = 0; i <= n; i++) { if (table[i][j].fs > -1) table[i][j + 1] = H{ table[table[i][j].fs][j].fs, table[i][j].sc + table[table[i][j].fs][j].sc }; } } H get(int x, int y) { if (dep[x] > dep[y]) swap(x, y); int sum = 0; for (int i = 24; i >= 0; i--) { if (((dep[y] - dep[x]) >> i) & 1) { sum += table[y][i].sc; y = table[y][i].fs; } } if (x == y) return H{ x,sum }; for (int i = 24; i >= 0; i--) { if (table[x][i].fs != table[y][i].fs) { sum += table[x][i].sc + table[y][i].sc; x = table[x][i].fs, y = table[y][i].fs; } } return H{ table[x][0].fs, sum + table[x][0].sc + table[y][0].sc }; } int operator[](const int& x) const { return dep[x]; } private: void dfs(int v, int p, int d) { table[v][0] = H{ p,-1 }; dep[v] = d; for (auto& to : e[v]) { if (to.fs != p) dfs(to.fs, v, d + 1); else table[v][0].sc = to.sc; } } }; auto RUQ = [](int& num, int x, int width) {num = x; }; auto RAQ = [](int& num, int x, int width) {num += x; }; auto RCMXQ = [](int& num, int x, int width) {num = max(num, x); }; auto RCMNQ = [](int& num, int x, int width) {num = min(num, x); }; auto RASQ = [](int& num, int x, int width) {num += (x * width); }; auto RUSQ = [](int& num, int x, int width) {num = (x * width); }; auto RSQ = [](int x, int y)->int {return x + y; }; auto RMXQ = [](int x, int y)->int {return max(x, y); }; auto RMNQ = [](int x, int y)->int {return min(x, y); }; class Segtree { #define SEG_SIZE 900000 using F = function; using T = function; int siz, rr, zer, zer2; int dat[SEG_SIZE], lazy[SEG_SIZE]; bool updated[SEG_SIZE]; F upd; T qur; public: //for update, for query void init(int size, F update, T query, int zero, int zero2) { siz = size, upd = update, qur = query, zer = zero2, zer2 = zero; rr = 1; while (rr < size) rr *= 2; for (int i = 0; i < SEG_SIZE; i++) dat[i] = zer, lazy[i] = zer2, updated[i] = 0; } void rmnq(int n) { init(n, RUQ, RMNQ, 0, inf); } void rmxq(int n) { init(n, RUQ, RMXQ, 0, -inf); } template void build(const Iterator st, const Iterator ed) { Iterator it = st; int cur = rr - 1; while (it != ed) dat[cur++] = (*it++); for (int i = rr - 2; i >= 0; i--) dat[i] = qur(dat[i * 2 + 1], dat[i * 2 + 2]); } void build(vectorv) { for (int i = 0; i < min((int)v.size(), siz); i++) dat[i + rr - 1] = v[i]; for (int i = rr - 2; i >= 0; i--) dat[i] = qur(dat[i * 2 + 1], dat[i * 2 + 2]); } void update(int a, int b, int x) { update(0, a, b, 0, rr, x); } void change(int a, int x) { change2(a, x); }//一点更新 int query(int a, int b) { return query(0, a, b, 0, rr); } int lower_bound(int a, int b, functioncomp) { return lower_bound(0, a, b, 0, rr, comp); } int upper_bound(int a, int b, functioncomp) { return upper_bound(0, a, b, 0, rr, comp); } int operator[](const int i) { return query(i, i + 1); } private: void eval(int i, int l, int r) { if (!updated[i]) return; if (r - l > 1) { upd(lazy[i * 2 + 1], lazy[i], 1); upd(lazy[i * 2 + 2], lazy[i], 1); updated[i * 2 + 1] = updated[i * 2 + 2] = 1; } upd(dat[i], lazy[i], min(r, siz) - l); lazy[i] = zer2; updated[i] = 0; } void update(int i, int a, int b, int l, int r, int x) { eval(i, l, r); if (b <= l || r <= a) return; if (a <= l && r <= b) { upd(lazy[i], x, 1); updated[i] = 1; eval(i, l, r); return; } update(i * 2 + 1, a, b, l, (l + r) / 2, x); update(i * 2 + 2, a, b, (l + r) / 2, r, x); dat[i] = qur(dat[i * 2 + 1], dat[i * 2 + 2]); } void change2(int a, int x) { query(a, a + 1); int t = a + rr - 1; dat[t] = x; while (t > 0) { t = (t - 1) / 2; dat[t] = qur(dat[t * 2 + 1], dat[t * 2 + 2]); } } int query(int i, int a, int b, int l, int r) { eval(i, l, r); if (b <= l || r <= a) return zer; if (a <= l && r <= b) return dat[i]; return qur(query(i * 2 + 1, a, b, l, (l + r) / 2), query(i * 2 + 2, a, b, (l + r) / 2, r)); } int lower_bound(int i, int a, int b, int l, int r, functioncomp) { eval(i, l, r); if (b <= l || r <= a || !comp(dat[i])) return siz; if (r - l == 1) return l; int tmp = lower_bound(i * 2 + 1, a, b, l, (l + r) / 2, comp); if (tmp < siz) return tmp; return lower_bound(i * 2 + 2, a, b, (l + r) / 2, r, comp); } int upper_bound(int i, int a, int b, int l, int r, functioncomp) { eval(i, l, r); if (b <= l || r <= a || !comp(dat[i])) return 0; if (r - l == 1) return r; int tmp = upper_bound(i * 2 + 2, a, b, (l + r) / 2, r, comp); if (tmp > 0) return tmp; return upper_bound(i * 2 + 1, a, b, l, (l + r) / 2, comp); } } seg; //--------------------------------------------------------------------- int n, k; vi a; vece; LCA lca; void generate() { cin >> n >> k; rep(i, k) a.pb(read() - 1); rep(i, n - 1) { e.pb(readh(1)); } } int solve() { //前半を固定すると、LCAは右端を伸ばすときに徐々に登っていき、最終的に右端と一致するようになる //一致した後の最大値は、RMQをすればよいから、セグ木 lca.init(n); rep(i, n - 1) lca.add_edge(e[i].fs, e[i].sc); lca.build(0); seg.init(k, RUQ, RMXQ, 0, -inf); int ans = 0, ance = a[0]; vi la(k, a[k - 1]); seg.update(k - 1, k, lca[a[k - 1]] + 1); ans = lca[a[k - 1]] + 1; for (int i = k - 2; i >= 0; i--) { la[i] = lca.get(la[i + 1], a[i]).fs; seg.update(i, i + 1, lca[la[i]] + k - i); chmax(ans, lca[la[i]] + k - i); } rep(i, k - 1) { ance = lca.get(ance, a[i]).fs; chmax(ans, i + 1 + lca[ance]); int tmp = lca.get(ance, a[k - 1]).fs; int ok = k - 1, ng = i, mid; while (ok - ng > 1) { mid = (ok + ng) / 2; if (lca.get(tmp, la[mid]).fs == tmp) ok = mid; else ng = mid; } chmax(ans, (k - ok) + i + 1 + lca[tmp]); chmax(ans, i + 1 + seg.query(i + 1, ok)); chmax(ans, i + 1 + lca[ance]); //segは、lca[]+人数 } return ans; } signed main() { generate(); int ans = solve(); cout << ans << endl; }