#include "bits/stdc++.h" using namespace std; #define int long long #define REP(i, n) for (int i = 0; i < (int)n; ++i) #define RREP(i, n) for (int i = (int)n - 1; i >= 0; --i) #define FOR(i, s, n) for (int i = s; i < (int)n; ++i) #define RFOR(i, s, n) for (int i = (int)n - 1; i >= s; --i) #define ALL(a) a.begin(), a.end() #define IN(a, x, b) (a <= x && x < b) templateistream&operator >>(istream&is,vector&vec){for(T&x:vec)is>>x;return is;} templateinline void out(T t){cout << t << "\n";} templateinline void out(T t,Ts... ts){cout << t << " ";out(ts...);} templateinline bool CHMIN(T&a,T b){if(a > b){a = b;return true;}return false;} templateinline bool CHMAX(T&a,T b){if(a < b){a = b;return true;}return false;} constexpr int INF = 1e18; #define endl '\n' #define IOS() ios_base::sync_with_stdio(0);cin.tie(0) // 負の数にも対応した mod // 例えば -17 を 5 で割った余りは本当は 3 (-17 ≡ 3 (mod. 5)) // しかし単に -17 % 5 では -2 になってしまう inline long long mod(long long a, long long m) { return (a % m + m) % m; } // 拡張 Euclid の互除法 // ap + bq = gcd(a, b) となる (p, q) を求め、d = gcd(a, b) をリターンします long long extGcd(long long a, long long b, long long &p, long long &q) { if (b == 0) { p = 1; q = 0; return a; } long long d = extGcd(b, a%b, q, p); q -= a/b * p; return d; } // 中国剰余定理 // リターン値を (r, m) とすると解は x ≡ r (mod. m) // 解なしの場合は (0, -1) をリターン pair ChineseRem(long long b1, long long m1, long long b2, long long m2) { long long p, q; long long d = extGcd(m1, m2, p, q); // p is inv of m1/d (mod. m2/d) if ((b2 - b1) % d != 0) return make_pair(0, -1); long long m = m1 * (m2/d); // lcm of (m1, m2) long long tmp = (b2 - b1) / d * p % (m2/d); long long r = mod(b1 + m1 * tmp, m); return make_pair(r, m); } void solve(){ //配列は必要な分だけ毎回確保する! int X, Y; cin >> X >> Y; int ans = 0; auto f = [&](int a) -> int { --a; if(a == 0) return 0; if(1 - a * a == 0) return 0; if ((X - a * Y) % (1 - a * a)) return 0; int c = (X - a * Y) / (1 - a * a); if((X - c) % a) return 0; int b = (X - c) / a; if(b == 0) return 0; return c > 0 && b > 0; }; for(int i = 1; i * i <= X + Y; ++i) { if((X + Y) % i) continue; ans += f(i); if(i != (X + Y) / i) ans += f((X + Y) / i); } out(ans); } signed main(){ IOS(); int Q = 1; cin >> Q; while(Q--)solve(); }