#include #define rep(i,n) for (int i = 0; i < (int)(n); i ++) #define irep(i,n) for (int i = (int)(n) - 1;i >= 0;--i) using namespace std; using ll = long long; using PL = pair; using P = pair; constexpr int INF = 1000000000; constexpr long long HINF = 1000000000000000; constexpr long long MOD = 1000000007;// = 998244353; constexpr double EPS = 1e-4; constexpr double PI = 3.14159265358979; template struct ModInt { long long x; ModInt(long long x = 0) :x((x%Modulus + Modulus)%Modulus) {} constexpr ModInt &operator+=(const ModInt a) {if ((x += a.x) >= Modulus) x -= Modulus; return *this;} constexpr ModInt &operator-=(const ModInt a) {if ((x += Modulus - a.x) >= Modulus) x -= Modulus; return *this;} constexpr ModInt &operator*=(const ModInt a) {(x *= a.x) %= Modulus; return *this;} constexpr ModInt &operator/=(const ModInt a) {return *this *= a.inverse();} constexpr ModInt operator+(const ModInt a) const {return ModInt(*this) += a.x;} constexpr ModInt operator-(const ModInt a) const {return ModInt(*this) -= a.x;} constexpr ModInt operator*(const ModInt a) const {return ModInt(*this) *= a.x;} constexpr ModInt operator/(const ModInt a) const {return ModInt(*this) /= a.x;} friend constexpr ostream& operator<<(ostream& os,const ModInt& a) {return os << a.x;} friend constexpr istream& operator>>(istream& is,ModInt& a) {return is >> a.x;} ModInt inverse() const {// x ^ (-1) long long a = x,b = Modulus,p = 1,q = 0; while (b) {long long d = a/b; a -= d*b; swap(a,b); p -= d*q; swap(p,q);} return ModInt(p); } ModInt pow(long long N) {// x ^ N ModInt a = 1; while (N) { if (N&1) a *= *this; *this *= *this; N >>= 1; } return a; } }; using mint = ModInt<1000000007>; using Matrix = vector>; Matrix mat_mul(Matrix &A,Matrix &B) { Matrix ans(A.size(),vector(B[0].size(),0)); for (int i = 0;i < A.size(); i++) { for (int j = 0;j < A[0].size();j ++) { for (int k = 0;k < A[0].size(); k++) { ans[i][j] += A[i][k]*B[k][j]; } } } return ans; } Matrix mat_pow(Matrix &A,long long N) { Matrix ans(A.size(),vector(A.size(),0)); for (int i = 0;i < A.size();i ++) ans[i][i] = 1; Matrix X = A; while (N > 0) { if (N&1) ans = mat_mul(ans,X); N >>= 1; X = mat_mul(X,X); } return ans; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); ll N; cin >> N; Matrix mat(4,vector(4)); rep(i,4)rep(j,4) { if (i == j) mat[i][j] = 0; else mat[i][j] = 1; } Matrix m = mat_pow(mat,N); mint ans = m[0][0]; cout << ans << '\n'; return 0; }