#pragma GCC optimize("O3") #include using namespace std; using ll=long long; using P=pair; template using V=vector; #define fi first #define se second #define all(v) (v).begin(),(v).end() const ll inf=(1e18); //const ll mod=998244353; const ll mod=1000000007; ll GCD(ll a,ll b) {return b ? GCD(b,a%b):a;} ll LCM(ll c,ll d){return c/GCD(c,d)*d;} struct __INIT{__INIT(){cin.tie(0);ios::sync_with_stdio(false);cout< bool chmax(T &a, const T &b) { if (a bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } struct mint{ using ull=unsigned long long int; ull v; mint(ll vv=0){s(vv%mod+mod);} mint& s(ull vv){ v=vv>=1; } return res; } mint inv()const{return pow(mod-2);} //拡張ユークリッドの互除法 /* mint inv()const{ int x,y; int g=extgcd(v,mod,x,y); assert(g==1); if(x<0)x+=mod; return mint(x); }*/ friend ostream& operator<<(ostream&os,const mint&val){ return os<(const mint&val)const{return v>val.v;} }; struct edge{ ll to,cost; edge(ll to,ll cost):to(to),cost(cost) {} }; vector> g; vector d; ll n,m; ll mid; V used; bool dijkstra(ll s){ for(int i=0;i,greater

> q; q.push(P(0,s));//始点を0で置く while(!q.empty()){ ll cur=q.top().se,val=q.top().fi; q.pop(); if(used[cur]||d[cur]mid)continue; if(used[e.to])continue; if(d[e.to]>e.cost){ d[e.to]=e.cost; q.push(P(d[e.to],e.to)); } } } return (*max_element(all(d)) get_path(ll t){//頂点tへの最短経路 V path; for(;t!=-1;t=d[t]){ path.emplace_back(t); } reverse(all(path)); return path; } mint ans=0; V cnt; ll D; void dfs(int cur,int par){ for(edge &e:g[cur]){ if(e.to==par)continue; if(d[e.to]!=e.cost)continue; dfs(e.to,cur); } for(edge &e:g[cur]){ if(e.to==par)continue; if(d[e.to]!=e.cost)continue; ans+=mint(D).pow(e.cost)*mint((cnt[e.to])*(n-cnt[e.to])); cnt[cur]+=cnt[e.to]; } cnt[cur]++; } int main(){ cin>>n>>m>>D; cnt.assign(n,0); d.resize(n); g.resize(n); ll x,y,z; for(int i=0;i>x>>y>>z; x--;y--; g[x].emplace_back(y,z); g[y].emplace_back(x,z); } ll l=-1,r=(1e9)+7; while(r-l>1){ mid=(l+r)/2; if(dijkstra(0))r=mid; else l=mid; } // for(int i=0;i