def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = y * y % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += i % 2 + (3 if i % 3 == 1 else 1) if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def inv(a, mod): b = mod s, u = 1, 0 while b: q = a // b a, b = b, a % b s, u = u, s - q * u assert a == 1 return s % mod def sqrt_mod_prime_power(a, p, e, mod): # solve x^(p^e) = a q = mod - 1 s = 0 while q % p == 0: q //= p s += 1 pe = p ** e d = pow(-q, (p-1) * p ** (e-1) - 1, pe) * q r = pow(a, (d + 1) // pe, mod) t = pow(a, d, mod) if t == 1: return r ps = p ** (s - 1) c = -1 z = 2 while 1: c = pow(z, q, mod) if pow(c, ps, mod) != 1: break z += 1 b = -1 while t != 1: tmp = pow(t, p, mod) s2 = 1 while tmp != 1: tmp = pow(tmp, p, mod) s2 += 1 if s2 + e <= s: b = c for _ in range(s - s2 - e): b = pow(b, p, mod) c = pow(b, pe, mod) s = s2 r = r * b % mod t = t * c % mod return r def sqrt_mod(a, n, p): # solve x^n = a (mod p) assert n >= 1 a %= p n %= p - 1 if a <= 1: return a g = gcd(p - 1, n) if pow(a, (p-1) // g, p) != 1: return -1 a = pow(a, inv(n // g, (p-1) // g), p) pf = primeFactor(g) for pp in pf: a = sqrt_mod_prime_power(a, pp, pf[pp], p) return a T = int(input()) for _ in range(T): p, k, a = map(int, input().split()) print(sqrt_mod(a, k, p))