#include #ifdef DEBUG #include #else #define dump(...) ((void)0) #endif template bool chmin(T &a, const U &b){ return (a > b ? a = b, true : false); } template bool chmax(T &a, const U &b){ return (a < b ? a = b, true : false); } template void fill_array(T (&a)[N], const U &v){ std::fill((U*)a, (U*)(a + N), v); } template auto make_vector(const std::array &a, T value = T()){ static_assert(I >= 1); static_assert(N >= 1); if constexpr (I == 1){ return std::vector(a[N - I], value); }else{ return std::vector(a[N - I], make_vector(a, value)); } } template std::ostream& operator<<(std::ostream &s, const std::vector &a){ for(auto it = a.begin(); it != a.end(); ++it){ if(it != a.begin()) s << " "; s << *it; } return s; } template std::istream& operator>>(std::istream &s, std::vector &a){ for(auto &x : a) s >> x; return s; } /** * @title Dual segment tree * @docs dual_segment_tree.md */ template class DualSegmentTree { using value_type = typename Monoid::value_type; const static Monoid M; const int depth, size, hsize; std::vector data; void propagate(int i){ if(i < hsize){ data[i << 1 | 0] = M(data[i], data[i << 1 | 0]); data[i << 1 | 1] = M(data[i], data[i << 1 | 1]); data[i] = M(); } } void propagate_top_down(int i){ std::vector temp; while(i > 1){ i >>= 1; temp.push_back(i); } for(auto it = temp.rbegin(); it != temp.rend(); ++it) propagate(*it); } public: DualSegmentTree(int n): depth(n > 1 ? 32 - __builtin_clz(n - 1) + 1 : 1), size(1 << depth), hsize(size / 2), data(size, M()) {} void update(int l, int r, const value_type &x){ propagate_top_down(l + hsize); propagate_top_down(r + hsize); int L = l + hsize; int R = r + hsize; while(L < R){ if(R & 1) --R, data[R] = M(x, data[R]); if(L & 1) data[L] = M(x, data[L]), ++L; L >>= 1, R >>= 1; } } value_type operator[](int i){ propagate_top_down(i + hsize); return data[i + hsize]; } template void init_with_vector(const std::vector &a){ data.assign(size, M()); for(int i = 0; i < (int)a.size(); ++i) data[hsize + i] = a[i]; } template void init(const T &val){ init_with_vector(std::vector(hsize, val)); } }; /** * @title Sum monoid * @docs sum.md */ template struct SumMonoid { using value_type = T; value_type operator()() const {return 0;} value_type operator()(value_type a, value_type b) const {return a + b;} }; namespace solver{ void init(){ std::cin.tie(0); std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(12); std::cerr << std::fixed << std::setprecision(12); std::cin.exceptions(std::ios_base::failbit); } void solve(){ int N; std::cin >> N; std::vector A(N + 1); for(int i = 1; i <= N; ++i) std::cin >> A[i]; DualSegmentTree> seg(N + 1); seg.init_with_vector(A); bool ok = true; for(int i = N; i > 0; --i){ auto x = seg[i]; if(x % i == 0){ seg.update(0, i, x / i); }else{ ok = false; break; } } std::cout << (ok ? "Yes" : "No") << "\n"; } } int main(){ solver::init(); while(true){ try{ solver::solve(); }catch(const std::istream::failure &e){ break; } } return 0; }