#pragma region Macros #pragma GCC optimize("O3") #pragma GCC target("avx2,avx") #pragma GCC optimize("unroll-loops") #include #define ll long long #define ld long double #define rep2(i, a, b) for(ll i = a; i <= b; ++i) #define rep(i, n) for(ll i = 0; i < n; ++i) #define rep3(i, a, b) for(ll i = a; i >= b; --i) #define pii pair #define pll pair #define pb push_back #define eb emplace_back #define vi vector #define vll vector #define vpi vector #define vpll vector #define overload2(_1, _2, name, ...) name #define vec(type, name, ...) vector name(__VA_ARGS__) #define VEC(type, name, size) \ vector name(size); \ IN(name) #define vv(type, name, h, ...) vector> name(h, vector(__VA_ARGS__)) #define VV(type, name, h, w) \ vector> name(h, vector(w)); \ IN(name) #define vvv(type, name, h, w, ...) vector>> name(h, vector>(w, vector(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector>>> name(a, vector>>(b, vector>(c, vector(__VA_ARGS__)))) #define fi first #define se second #define all(c) begin(c), end(c) #define ios ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) using namespace std; template using pq = priority_queue; template using pqg = priority_queue, greater>; #define si(c) (int)(c).size() #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define ULL(...) \ ull __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) #define LD(...) \ ld __VA_ARGS__; \ IN(__VA_ARGS__) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(long double &a) { cin >> a; } void scan(string &a) { cin >> a; } template void scan(vector &); template void scan(vector &a) { for(auto &i : a) scan(i); } template void scan(T &a) { cin >> a; } void IN() {} template void IN(Head &head, Tail &... tail) { scan(head); IN(tail...); } string stin() { string s; cin >> s; return s; } template inline bool chmax(T &a, S b) { if(a < b) { a = b; return 1; } return 0; } template inline bool chmin(T &a, S b) { if(a > b) { a = b; return 1; } return 0; } vi iota(int n) { vi a(n); iota(all(a), 0); return a; } template void UNIQUE(vector &x) { sort(all(x)); x.erase(unique(all(x)), x.end()); } int in() { int x; cin >> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } void print() { putchar(' '); } void print(bool a) { cout << a; } void print(int a) { cout << a; } void print(long long a) { cout << a; } void print(char a) { cout << a; } void print(string &a) { cout << a; } void print(double a) { cout << a; } template void print(const vector &); template void print(const array &); template void print(const pair &p); template void print(const T (&)[size]); template void print(const vector &a) { if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end();) { cout << " "; print(*i); } cout << endl; } template void print(const deque &a) { if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end();) { cout << " "; print(*i); } } template void print(const array &a) { print(a[0]); for(auto i = a.begin(); ++i != a.end();) { cout << " "; print(*i); } } template void print(const pair &p) { cout << '('; print(p.first); cout << ","; print(p.second); cout << ')'; } template void print(set &x) { for(auto e : x) print(e), cout << " "; cout << endl; } template void print(multiset &x) { for(auto e : x) print(e), cout << " "; cout << endl; } template void print(const T (&a)[size]) { print(a[0]); for(auto i = a; ++i != end(a);) { cout << " "; print(*i); } } template void print(const T &a) { cout << a; } int out() { putchar('\n'); return 0; } template int out(const T &t) { print(t); putchar('\n'); return 0; } template int out(const Head &head, const Tail &... tail) { print(head); putchar(' '); out(tail...); return 0; } ll gcd(ll a, ll b) { while(b) { ll c = b; b = a % b; a = c; } return a; } ll lcm(ll a, ll b) { if(!a || !b) return 0; return a * b / gcd(a, b); } vector factor(ll x) { vector ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0) { ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; } template vector divisor(T x) { vector ans; for(T i = 1; i * i <= x; i++) if(x % i == 0) { ans.pb(i); if(i * i != x) ans.pb(x / i); } return ans; } template void zip(vector &x) { vector y = x; sort(all(y)); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } int popcount(ll x) { return __builtin_popcountll(x); } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int rnd(int n) { return uniform_int_distribution(0, n - 1)(rng); } ll rndll(ll n) { return uniform_int_distribution(0, n - 1)(rng); } template void shuffle(vector &v) { rep3(i, v.size() - 1, 1) { swap(v[i], v[rnd(i)]); } } #define endl '\n' vector YES{"NO", "YES"}; vector Yes{"No", "Yes"}; vector yes{"no", "yes"}; #ifdef _LOCAL #undef endl #define debug(x) \ cout << #x << ": "; \ print(x); \ cout << endl; void err() {} template void err(const T &t) { print(t); cout << " "; } template void err(const Head &head, const Tail &... tail) { print(head); putchar(' '); out(tail...); } #else #define debug(x) template void err(const T &...) {} #endif template struct edge { int from, to; T cost; int id; edge(int to, T cost) : from(-1), to(to), cost(cost) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template using Edges = vector>; struct Graph : vector> { using vector>::vector; Graph(int n, int m) : vector(n) { read(m); } inline void add(int a, int b, bool directed = false) { (*this)[a].emplace_back(b); if(!directed) (*this)[b].emplace_back(a); } void read(int n = -1, int offset = 1, bool directed = false) { if(n == -1) n = this->size() - 1; int a, b; while(n--) { cin >> a >> b; Graph::add(a - offset, b - offset, directed); } } }; template struct WeightedGraph : vector> { using vector>::vector; inline void add(int a, int b, T c, bool directed = false) { (*this)[a].emplace_back(b, c); if(!directed) (*this)[b].emplace_back(a, c); } void read(int n = -1, int offset = 1) { if(n == -1) n = this->size() - 1; int a, b; T c; while(n--) { cin >> a >> b >> c; WeightedGraph::add(a - offset, b - offset, c); } } }; struct Setup_io { Setup_io() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); cout << fixed << setprecision(15); } } setup_io; #define i128 __int128_t #define ull unsigned long long int #define TEST \ INT(testcases); \ while(testcases--) #pragma endregion template static constexpr T inf = numeric_limits::max() / 2; // _________コーディングはここから!!___________ template struct SegmentTree { using F = function; #define clz(x) __builtin_clz(x) SegmentTree(int n, const F f, const T &unit) : f(f), unit(unit), sz(n - 1 ? 1 << (32 - clz(n - 1)) : 1) { seg.assign(2 * sz, unit); } SegmentTree(vector &a, const F f, const T &unit) : f(f), sz((int)a.size() > 1 ? 1 << (32 - clz(a.size() - 1)) : 1), unit(unit) { int n0 = a.size(); seg.assign(2 * sz, unit); for(int i = 0; i < n0; ++i) seg[i + sz] = a[i]; for(int i = sz - 1; i > 0; --i) seg[i] = f(seg[i << 1], seg[(i << 1) | 1]); } const int sz; vector seg; const F f; const T unit; void set(int k, T x) { seg[k + sz] = x; } void build() { for(int i = sz - 1; i > 0; --i) seg[i] = f(seg[i << 1], seg[(i << 1) | 1]); } T query(int l, int r) { T x = unit; for(int d = r - l; d >= 1; d = r - l) { int L = l | ((1U << 31) >> clz(d)); int k = __builtin_ctz(L); x = f(x, seg[(sz | l) >> k]); l += L & (-L); } return x; } void update(int i, T x) { int k = i + sz; seg[k] = x; for(k = k >> 1; k > 0; k >>= 1) { seg[k] = f(seg[k << 1], seg[(k << 1) | 1]); } } void add(int i, T x) { int k = i + sz; seg[k] += x; for(k = k >> 1; k > 0; k >>= 1) { seg[k] = f(seg[k << 1], seg[(k << 1) | 1]); } } SegmentTree() = default; T operator[](int k) const { return seg[sz + k]; } }; template struct RMQ : SegmentTree { RMQ(int n) : SegmentTree( n, [](T i, T j) { return max(i, j); }, numeric_limits::min()) {} RMQ(vector &a) : SegmentTree( a, [](T i, T j) { return max(i, j); }, numeric_limits::min()) {} }; template struct RmQ : SegmentTree { RmQ(int n) : SegmentTree( n, [](T i, T j) { return min(i, j); }, numeric_limits::max()) {} RmQ(vector &a) : SegmentTree( a, [](T i, T j) { return min(i, j); }, numeric_limits::max()) {} }; namespace modular { constexpr ll MOD = 1000000007; const int MAXN = 1100000; template class modint { using u64 = ll; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus) % Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator-() const noexcept { return modint() - *this; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } template constexpr modint operator^(T rhs) const noexcept { return modint(*this) ^= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if(a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if(a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr bool operator==(const modint rhs) const noexcept { return a == rhs.a; } template constexpr modint &operator^=(T n) noexcept { modint res = 1; modint x = a; while(n) { if(n & 1) res *= x; x *= x; n >>= 1; } a = res.a; return *this; } }; #define mint modint #define vmint vector vmint Inv{0, 1}, Prd{1, 1}, Invprd{1, 1}; mint inv(int n) { if(Inv.size() > n) return Inv[n]; else { for(int i = Inv.size(); i <= n; ++i) Inv.emplace_back(Inv[MOD % i] * (-MOD / i)); return Inv[n]; } } mint prd(int n) { if(Prd.size() > n) return Prd[n]; else for(int i = Prd.size(); i <= n; ++i) Prd.emplace_back(Prd[i - 1] * i); return Prd[n]; } mint invprd(int n) { if(Invprd.size() > n) return Invprd[n]; else for(int i = Invprd.size(); i <= n; ++i) Invprd.emplace_back(Invprd[i - 1] * inv(i)); return Invprd[n]; } mint modpow(ll a, ll n) { mint x = a; return x ^= n; } template modint operator/(modint l, modint r) { if(r.a < MAXN) return l * inv(r.a); return l * (r ^ (MOD - 2)); } template modint operator/(T l, modint r) { return modint(l) / r; } template modint operator/=(modint &l, modint r) { return l = l / r; } mint C(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; return prd(a) * invprd(b) * invprd(a - b); } mint P(int a, int b) { if(a < 0 || b < 0) return 0; if(a < b) return 0; return prd(a) * invprd(a - b); } ostream &operator<<(ostream &os, mint a) { os << a.a; return os; } istream &operator>>(istream &is, mint &a) { ll x; is >> x; a = x; return is; } struct modinfo { int mod, root; }; constexpr modinfo base0{1045430273, 3}; constexpr modinfo base1{1051721729, 6}; constexpr modinfo base2{1053818881, 7}; using mint0 = modint; using mint1 = modint; using mint2 = modint; template void FMT(vector> &f, bool inv = false) { using V = vector>; static V g(30), ig(30); if(g.front().a == 0) { modint root = 2; while((root ^ ((mod - 1) / 2)).a == 1) root += 1; rep(i, 30) g[i] = -(root ^ ((mod - 1) >> (i + 2))), ig[i] = g[i] ^ (mod - 2); } int n = size(f); if(!inv) { for(int m = n; m >>= 1;) { modint w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = f[i], y = f[j] * w; if(x.a >= mod) x.a -= mod; f[i].a = x.a + y.a, f[j].a = x.a + (mod - y.a); } w *= g[__builtin_ctz(++k)]; } } } else { for(int m = 1; m < n; m *= 2) { modint w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = f[i], y = f[j]; f[i] = x + y, f[j].a = x.a + (mod - y.a), f[j] *= w; } w *= ig[__builtin_ctz(++k)]; } } } modint c; if(inv) c = modint(n) ^ (mod - 2); else c = 1; for(auto &&e : f) e *= c; } using Poly = vmint; Poly operator-(Poly f) { for(auto &&e : f) e = -e; return f; } Poly &operator+=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] += r[i]; return l; } Poly operator+(Poly l, const Poly &r) { return l += r; } Poly &operator-=(Poly &l, const Poly &r) { l.resize(max(l.size(), r.size())); rep(i, r.size()) l[i] -= r[i]; return l; } Poly operator-(Poly l, const Poly &r) { return l -= r; } Poly &operator<<=(Poly &f, size_t n) { return f.insert(f.begin(), n, 0), f; } Poly operator<<(Poly f, size_t n) { return f <<= n; } Poly &operator>>=(Poly &f, size_t n) { return f.erase(f.begin(), f.begin() + min(f.size(), n)), f; } Poly operator>>(Poly f, size_t n) { return f >>= n; } constexpr int mod0 = 998244353, mod1 = 1300234241, mod2 = 1484783617; using M0 = modint; using M1 = modint; using M2 = modint; template void mul(vector> &l, vector> &r) { int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1); l.resize(sz), FMT(l); r.resize(sz), FMT(r); rep(i, sz) l[i] *= r[i]; FMT(l, true); l.resize(n + m - 1); } Poly operator*(const Poly &l, const Poly &r) { if(l.empty() or r.empty()) return Poly(); int n = size(l), m = size(r), sz = 1 << __lg(2 * (n + m - 1) - 1); vector l0(n), r0(m); vector l1(n), r1(m); vector l2(n), r2(m); rep(i, n) l0[i] = l[i].a, l1[i] = l[i].a, l2[i] = l[i].a; rep(i, m) r0[i] = r[i].a, r1[i] = r[i].a, r2[i] = r[i].a; mul(l0, r0), mul(l1, r1), mul(l2, r2); Poly res(n + m - 1); // garner static constexpr M1 inv0 = 613999507; static constexpr M2 inv1 = 1147332803, inv0m1 = 45381342; static constexpr mint m0 = mod0, m0m1 = m0 * mod1; rep(i, n + m - 1) { int y0 = l0[i].a; int y1 = (inv0 * (l1[i] - y0)).a; int y2 = (inv0m1 * (l2[i] - y0) - inv1 * y1).a; res[i] = m0 * y1 + m0m1 * y2 + y0; } return res; } Poly &operator*=(Poly &l, const Poly &r) { return l = l * r; } ostream &operator<<(ostream &os, Poly a) { for(auto e : a) cout << e.a << " "; return os; } } // namespace modular using namespace modular; template struct SCC { G g; Graph rg; vector comp, ord; vector used; int num; // 連結成分の数 SCC(G &g) : g(g), rg(g.size()), comp(g.size(), -1), used(g.size()) { rep(i, g.size()) for(auto &e : g[i]) rg[e].emplace_back(i); ord.reserve(g.size()); build(); }; SCC(int n) : g(n), rg(n), comp(n, -1), used(n) { ord.reserve(n); }; inline void add(int a, int b) { g[a].emplace_back(b); rg[b].emplace_back(a); } int operator[](int k) { return comp[k]; } void dfs(int x) { if(used[x]) return; used[x] = true; for(auto &e : g[x]) if(!used[e]) dfs(e); ord.emplace_back(x); } void rdfs(int x, int cnt) { if(comp[x] != -1) return; comp[x] = cnt; for(int &e : rg[x]) if(comp[e] == -1) rdfs(e, cnt); } void build() { rep(i, g.size()) dfs(i); reverse(all(ord)); num = 0; for(int &i : ord) if(comp[i] == -1) { rdfs(i, num), num++; } } // 強連結成分を潰した DAG を返す Graph getGraph() { Graph res(num); rep(i, g.size()) { for(auto &e : g[i]) { if(comp[e] == comp[i]) continue; res[comp[i]].emplace_back(comp[e]); } } rep(i, g.size()) UNIQUE(res[i]); return res; } // 強連結成分ごとに属する頂点を返す vector> belong() { vector> res(num); rep(i, g.size()) res[comp[i]].emplace_back(i); return res; } }; struct TwoSat : SCC { int n; using SCC::SCC; TwoSat(int n) : n(n), SCC(n * 2) {} // not i = i + n inline int rev(int x) { return x >= n ? x - n : x + n; } inline int id(int x) { return x < 0 ? n - x - 1 : x - 1; } inline void IF(int x, int y) { // x => y add(x, y), add(rev(y), rev(x)); } void OR(int x, int y) { IF(rev(id(x)), id(y)); } vector solve() { build(); vector res(n); rep(i, n) { if(comp[i] == comp[rev(i)]) return vector(); res[i] = comp[i] > comp[rev(i)]; } return res; } bool can() { build(); rep(i, n) { if(comp[i] == comp[rev(i)]) return false; } return true; } }; template struct UnionFind { vector data; vector sz; bool is_default; UnionFind(int n) { data.assign(n, -1); sz.assign(n, 1); is_default = true; } UnionFind(int n, vector &a) { data.assign(n, -1); sz = a; is_default = false; } bool unite(int x, int y) { x = find(x), y = find(y); if(x == y) return false; if(data[x] > data[y]) swap(x, y); data[x] += data[y]; if(!is_default) sz[x] += sz[y]; data[y] = x; return true; } bool same(int x, int y) { return find(x) == find(y); } int find(int x) { if(data[x] < 0) return x; return (data[x] = find(data[x])); } T size(int x) { return (is_default ? -data[find(x)] : sz[find(x)]); } }; main() { INT(n, m); vi l(m), r(m), p(n); rep(i, m) cin >> l[i] >> r[i] >> p[i], l[i]--; vi imos(n + 1); rep(i, m) if(p[i]) imos[l[i]]++, imos[r[i]]--; rep(i, m) imos[i + 1] += imos[i]; SegmentTree seg( n + 1, [](mint x, mint y) { return x + y; }, (mint)0); seg.set(0, 1); vv(pii, query, n + 1); rep(i, m) query[r[i] - 1].eb(l[i], p[i]); mint P = 1; seg.build(); int L = 0; rep(i, n) { if(!imos[i]) { seg.update(i + 1, seg.query(0, i + 1) * inv(2)); } for(auto [a, b] : query[i]) { if(!b) while(L <= a) seg.update(L++, 0); } } rep(i, n + 1) seg.update(i, seg[i]); mint ans = seg.query(0, n + 1); UnionFind uf((n + 1) * 2); rep(i, m) { if(p[i] == 1) { uf.unite(r[i], l[i]); uf.unite(r[i] + n + 1, l[i] + n + 1); } else if(p[i] == -1) { uf.unite(r[i], l[i] + n + 1); uf.unite(r[i] + n + 1, l[i]); } } bool can = true; rep(i, n + 1) { if(uf.same(i, i + n + 1)) can = false; } if(!can) { cout << 0 << endl; } else { int cnt = 0; rep(i, n + 1) if(uf.find(i) == i) cnt++; rep(i, n + 1) if(uf.find(i + n + 1) == i + n + 1) cnt++; ans *= modpow(2, cnt / 2); ans *= inv(2); cout << ans << endl; } }