import static java.lang.Math.*; import static java.math.BigInteger.*; import static java.util.Arrays.*; import static java.util.Collections.*; import java.math.*; import java.util.*; import java.io.*; public class Main { public static void main(String[] args) { new Main().run(); } Scanner in = new Scanner(System.in); void _out(Object...os) { System.out.println(deepToString(os)); } void _err(Object...os) { System.err.println(deepToString(os)); } final long MO = 998244353; final long G = 3; void run() { for (; in.hasNext(); ) { int X = in.nextInt(); int Y = in.nextInt(); long T = in.nextLong(); int A = in.nextInt(); int B = in.nextInt(); int C = in.nextInt(); int D = in.nextInt(); int m = 1 << (X + 1); int n = 1 << (Y + 1); long[] gms = new long[m]; long[] gns = new long[n]; gms[0] = 1; gns[0] = 1; gms[1] = power(G, (MO - 1) / m); gns[1] = power(G, (MO - 1) / n); for (int i = 2; i < m; ++i) { gms[i] = (gms[i - 1] * gms[1]) % MO; } for (int i = 2; i < n; ++i) { gns[i] = (gns[i - 1] * gns[1]) % MO; } long[][] f = new long[m][n]; f[0][0] = f[1][0] = f[0][1] = f[m - 1][0] = f[0][n - 1] = 1; for (int x = 0; x < m; ++x) { fft(n, gns, f[x]); } for (int y = 0; y < n; ++y) { long[] work = new long[m]; for (int x = 0; x < m; ++x) { work[x] = f[x][y]; } fft(m, gms, work); for (int x = 0; x < m; ++x) { f[x][y] = work[x]; } } // long TT = 1 + (T - 1) % (MO - 1); for (int x = 0; x < m; ++x) for (int y = 0; y < n; ++y) { // f[x][y] = power(f[x][y], TT); f[x][y] = power(f[x][y], T); } for (int i = 1; i < m - i; ++i) { long t = gms[i]; gms[i] = gms[m - i]; gms[m - i] = t; } for (int i = 1; i < n - i; ++i) { long t = gns[i]; gns[i] = gns[n - i]; gns[n - i] = t; } for (int x = 0; x < m; ++x) { fft(n, gns, f[x]); } for (int y = 0; y < n; ++y) { long[] work = new long[m]; for (int x = 0; x < m; ++x) { work[x] = f[x][y]; } fft(m, gms, work); for (int x = 0; x < m; ++x) { f[x][y] = work[x]; } } long invMN = power((1L * m * n) % MO, MO - 2); for (int x = 0; x < m; ++x) for (int y = 0; y < n; ++y) { f[x][y] = (f[x][y] * invMN) % MO; } long ans = 0; for (int s : new int[]{+1, -1}) for (int t : new int[]{+1, -1}) { int dx = (s * C - A) & (m - 1); int dy = (t * D - B) & (n - 1); ans += s * t * f[dx][dy]; } ans = (ans % MO + MO) % MO; System.out.println(ans); } } /* long power(long a, long e) { if (e == 0) { return 1 % MO; } else { long b = power(a, e / 2); b = (b * b) % MO; if (e % 2 != 0) { b = (b * a) % MO; } return b; } } //*/ //* long power(long a, long e) { long b = 1 % MO; for (; e > 0; e /= 2) { if (e % 2 != 0) { b = (b * a) % MO; } a = (a * a) % MO; } return b; } //*/ void fft(int n, long[] gs, long[] xs) { for (int l = n, shift = 0; (l /= 2) >= 1; ++shift) { for (int i = 0; i < l; ++i) { for (int j = i; j < n; j += l * 2) { long t = (xs[j] - xs[j + l]) % MO; xs[j] = (xs[j] + xs[j + l]) % MO; xs[j + l] = (gs[i << shift] * t) % MO; } } } for (int i = 0, j = 1; j < n; ++j) { for (int k = n / 2; k > (i ^= k); k /= 2) {} if (j < i) { long t = xs[i]; xs[i] = xs[j]; xs[j] = t; } } } }