{-# LANGUAGE BangPatterns #-} {-# LANGUAGE BinaryLiterals #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE NumericUnderscores #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE UnboxedTuples #-} ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- {- base -} import Control.Applicative import qualified Control.Arrow as Arrow import Control.Monad import Control.Monad.ST import Data.Bits import Data.Bool import qualified Data.Char as Char import Data.Complex import qualified Data.Foldable as Foldable import Data.Function import qualified Data.List as List import Data.Maybe import Data.Monoid import Data.Ord import Data.Ratio import Data.Semigroup import qualified Data.Word as Word import Foreign hiding (void) import GHC.Exts import Unsafe.Coerce {- array -} import qualified Data.Array.IO as ArrIO import qualified Data.Array.MArray as ArrMA import qualified Data.Array.ST as ArrST import qualified Data.Array.Storable as ArrStore import qualified Data.Array.Unboxed as ArrU {- bytestring -} import qualified Data.ByteString as BS import qualified Data.ByteString.Builder as BSB import qualified Data.ByteString.Builder.Extra as BSBE import qualified Data.ByteString.Char8 as BSC8 import qualified Data.ByteString.Lazy as BSL import qualified Data.ByteString.Lazy.Builder as BSLB import qualified Data.ByteString.Lazy.Char8 as BSLC8 import qualified Data.ByteString.Unsafe as BSU {- containers -} import qualified Data.Graph as Graph import Data.IntMap (IntMap) import qualified Data.IntMap as IntMap import Data.IntSet (IntSet) import qualified Data.IntSet as IntSet import qualified Data.Sequence as Seq import qualified Data.Tree as Tree {- integer-gmp -} import GHC.Integer.GMP.Internals {- time -} import qualified Data.Time.Calendar as Calender import qualified Data.Time.Calendar.Easter as CalenderE import qualified Data.Time.Calendar.Julian as CalenderJ import qualified Data.Time.Calendar.MonthDay as CalenderM import qualified Data.Time.Calendar.OrdinalDate as CalenderD import qualified Data.Time.Calendar.WeekDate as CalenderW import qualified Data.Time.LocalTime as LocalTime {- transformers -} import qualified Control.Monad.Trans.Accum as TAccum import qualified Control.Monad.Trans.Cont as TCont import qualified Control.Monad.Trans.Identity as TId import qualified Control.Monad.Trans.Reader as TReader import qualified Control.Monad.Trans.State.Lazy as TStateL import qualified Control.Monad.Trans.State.Strict as TStateS import qualified Control.Monad.Trans.Writer.CPS as TWriteC import qualified Control.Monad.Trans.Writer.Lazy as TWriteL import qualified Control.Monad.Trans.Writer.Strict as TWriteS {- vector -} import qualified Data.Vector as V import qualified Data.Vector.Generic as VG import qualified Data.Vector.Generic.Mutable as VGM import qualified Data.Vector.Mutable as VM import qualified Data.Vector.Primitive as VP import qualified Data.Vector.Primitive.Mutable as VPM import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- main :: IO () main = do (a, b) <- parse2 print $ a *% b ------------------------------------------------------------------------------- #define MOD 1000000007 modulus :: (Num a) => a modulus = MOD {-# INLINE modulus #-} infixr 8 ^% infixl 7 *%, /% infixl 6 +%, -% (+%) :: Int -> Int -> Int (+%) (I# x#) (I# y#) = case x# +# y# of r# -> I# (r# -# ((r# >=# MOD#) *# MOD#)) {-# INLINE (+%) #-} (-%) :: Int -> Int -> Int (-%) (I# x#) (I# y#) = case x# -# y# of r# -> I# (r# +# ((r# <# 0#) *# MOD#)) {-# INLINE (-%) #-} (*%) :: Int -> Int -> Int (*%) (I# x#) (I# y#) = I# ((x# *# y#) `remInt#` MOD#) {-# INLINE (*%) #-} (/%) :: Int -> Int -> Int (I# x#) /% (I# y#) = go# y# MOD# 1# 0# where go# a# b# u# v# | isTrue# (b# ># 0#) = case a# `quotInt#` b# of q# -> go# b# (a# -# (q# *# b#)) v# (u# -# (q# *# v#)) | otherwise = I# ((x# *# (u# +# MOD#)) `remInt#` MOD#) {-# INLINE (/%) #-} (^%) :: Int -> Int -> Int (^%) x n | n > 0 = go 1 x n | n== 0 = 1 | otherwise = go 1 ((/%) 1 x) (-n) where go !acc !y !m | m .&. 1 == 0 = go acc (y *% y) (unsafeShiftR m 1) | m == 1 = acc *% y | otherwise = go (acc *% y) (y *% y) (unsafeShiftR (m - 1) 1) {-# INLINE (^%) #-} intMod :: (Integral int) => int -> Mint intMod x = fromIntegral $ mod (fromIntegral x) MOD {-# INLINE intMod #-} intModValidate :: Mint -> Bool intModValidate (Mint x) = 0 <= x && x < MOD {-# INLINE intModValidate #-} newtype Mint = Mint { getMint :: Int } deriving newtype (Eq, Ord, Read) instance Show Mint where show (Mint x) = show x instance Num Mint where (+) = coerce (+%) (-) = coerce (-%) (*) = coerce (*%) abs = id signum = const (Mint 1) fromInteger x = coerce @Int @Mint . fromInteger $ mod x MOD instance Real Mint where toRational (Mint x) = toRational x instance Bounded Mint where minBound = Mint 0 maxBound = Mint $ MOD - 1 instance Enum Mint where toEnum = intMod fromEnum = coerce instance Fractional Mint where (Mint x) / (Mint y) = Mint (x /% y) fromRational q = fromInteger (numerator q) / fromInteger (denominator q) instance Integral Mint where quotRem x y = (x / y, x - x / y * y) toInteger = coerce (toInteger @Int) newtype instance VUM.MVector s Mint = MV_Mint (VUM.MVector s Int) newtype instance VU.Vector Mint = V_Mint (VU.Vector Int) instance VU.Unbox Mint instance VGM.MVector VUM.MVector Mint where {-# INLINE basicLength #-} basicLength (MV_Mint v) = VGM.basicLength v {-# INLINE basicUnsafeSlice #-} basicUnsafeSlice i n (MV_Mint v) = MV_Mint $ VGM.basicUnsafeSlice i n v {-# INLINE basicOverlaps #-} basicOverlaps (MV_Mint v1) (MV_Mint v2) = VGM.basicOverlaps v1 v2 {-# INLINE basicUnsafeNew #-} basicUnsafeNew n = MV_Mint `fmap` VGM.basicUnsafeNew n {-# INLINE basicInitialize #-} basicInitialize (MV_Mint v) = VGM.basicInitialize v {-# INLINE basicUnsafeReplicate #-} basicUnsafeReplicate n x = MV_Mint `fmap` VGM.basicUnsafeReplicate n (coerce x) {-# INLINE basicUnsafeRead #-} basicUnsafeRead (MV_Mint v) i = coerce `fmap` VGM.basicUnsafeRead v i {-# INLINE basicUnsafeWrite #-} basicUnsafeWrite (MV_Mint v) i x = VGM.basicUnsafeWrite v i (coerce x) {-# INLINE basicClear #-} basicClear (MV_Mint v) = VGM.basicClear v {-# INLINE basicSet #-} basicSet (MV_Mint v) x = VGM.basicSet v (coerce x) {-# INLINE basicUnsafeCopy #-} basicUnsafeCopy (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeCopy v1 v2 {-# INLINE basicUnsafeMove #-} basicUnsafeMove (MV_Mint v1) (MV_Mint v2) = VGM.basicUnsafeMove v1 v2 {-# INLINE basicUnsafeGrow #-} basicUnsafeGrow (MV_Mint v) n = MV_Mint `fmap` VGM.basicUnsafeGrow v n instance VG.Vector VU.Vector Mint where {-# INLINE basicUnsafeFreeze #-} basicUnsafeFreeze (MV_Mint v) = V_Mint `fmap` VG.basicUnsafeFreeze v {-# INLINE basicUnsafeThaw #-} basicUnsafeThaw (V_Mint v) = MV_Mint `fmap` VG.basicUnsafeThaw v {-# INLINE basicLength #-} basicLength (V_Mint v) = VG.basicLength v {-# INLINE basicUnsafeSlice #-} basicUnsafeSlice i n (V_Mint v) = V_Mint $ VG.basicUnsafeSlice i n v {-# INLINE basicUnsafeIndexM #-} basicUnsafeIndexM (V_Mint v) i = coerce `fmap` VG.basicUnsafeIndexM v i basicUnsafeCopy (MV_Mint mv) (V_Mint v) = VG.basicUnsafeCopy mv v {-# INLINE elemseq #-} elemseq _ = seq fact :: Int -> Mint fact = VU.unsafeIndex factCache {-# INLINE fact #-} recipFact :: Int -> Mint recipFact = VU.unsafeIndex recipFactCache {-# INLINE recipFact #-} invFact :: Int -> Mint invFact x = recipFact x * fact (x - 1) {-# INLINE invFact #-} nPk :: Int -> Int -> Mint nPk n k | n < k = 0 | otherwise = fact n * recipFact k {-# INLINE nPk #-} nCk :: Int -> Int -> Mint nCk n k | n < k = Mint 0 | otherwise = fact n * recipFact (n - k) * recipFact k {-# INLINE nCk #-} nHk :: Int -> Int -> Mint nHk n k | n < 0 || k < 0 = Mint 0 | k == 0 = Mint 1 | otherwise = nCk (n + k - 1) k {-# INLINE nHk #-} #define FACT_CACHE_SIZE 200000 factCacheSize :: Int factCacheSize = min (modulus - 1) FACT_CACHE_SIZE {-# INLINE factCacheSize #-} factCache :: VU.Vector Mint factCache = VU.scanl' (\ x y -> x * coerce y) (1 :: Mint) $ VU.generate factCacheSize (+ 1) {-# NOINLINE factCache #-} recipFactCache :: VU.Vector Mint recipFactCache = VU.scanr' ((*) . coerce) (1 / factCache VU.! factCacheSize) $ VU.generate factCacheSize (+ 1) {-# NOINLINE recipFactCache #-} ------------------------------------------------------------------------------- fi :: Int -> Integer fi = fromIntegral fI :: Integer -> Int fI = fromInteger gcdInt :: Int -> Int -> Int gcdInt a b = fI $ gcdInteger (fi a) (fi b) gcdextInt :: Int -> Int -> (Int, Int) gcdextInt a b = case gcdExtInteger c d of (# x, y #) -> (fI x, fI y) where c = fromIntegral a d = fromIntegral b lcmInt :: Int -> Int -> Int lcmInt a b = fI $ lcmInteger (fi a) (fi b) sqrInt :: Int -> Int sqrInt = fI . sqrInteger . fi powModInt :: Int -> Int -> Int -> Int powModInt a n mo = fI $ powModInteger (fi a) (fi n) (fi mo) recipModInt :: Int -> Int -> Int recipModInt x n = fI $ recipModInteger (fi x) (fi n) ------------------------------------------------------------------------------- type Parser a = BSC8.ByteString -> Maybe (a, BSC8.ByteString) parseInt :: Parser Int parseInt = fmap (Arrow.second BSC8.tail) . BSC8.readInt parseChar :: [Char] -> VU.Vector Char parseChar = VU.fromList parse1 :: IO Int parse1 = readLn parse2 :: IO (Int, Int) parse2 = (\vec -> (vec VU.! 0, vec VU.! 1)) . VU.unfoldrN 2 parseInt <$> BSC8.getLine parse3 :: IO (Int, Int, Int) parse3 = (\vec -> (vec VU.! 0, vec VU.! 1, vec VU.! 2)) . VU.unfoldrN 3 parseInt <$> BSC8.getLine parse4 :: IO (Int, Int, Int, Int) parse4 = (\vec -> (vec VU.! 0, vec VU.! 1, vec VU.! 2, vec VU.! 3)) . VU.unfoldrN 4 parseInt <$> BSC8.getLine parseM :: Int -> IO (VU.Vector Int) parseM m = VU.unfoldrN m parseInt <$> BSC8.getLine parseN :: Int -> IO (VU.Vector Int) parseN n = VU.replicateM n parse1 parseNM :: Int -> Int -> IO (V.Vector (VU.Vector Int)) parseNM n m = V.replicateM n $ VU.unfoldrN m parseInt <$> BSC8.getLine parseANBN :: Int -> IO (VU.Vector Int, VU.Vector Int) parseANBN n = do vectup <- VU.replicateM n $ (\vec -> (vec VU.! 0, vec VU.! 1)) . VU.unfoldr (BSC8.readInt . BSC8.dropWhile Char.isSpace) <$> BSC8.getLine return $ VU.unzip vectup parseANBNCN :: Int -> IO (VU.Vector Int, VU.Vector Int, VU.Vector Int) parseANBNCN n = do vectup <- VU.replicateM n $ (\vec -> (vec VU.! 0, vec VU.! 1, vec VU.! 2)) . VU.unfoldr (BSC8.readInt . BSC8.dropWhile Char.isSpace) <$> BSC8.getLine return $ VU.unzip3 vectup ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- -------------------------------------------------------------------------------