#define _USE_MATH_DEFINES #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // const int MOD = 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { cin.tie(nullptr); ios_base::sync_with_stdio(false); cout << fixed << setprecision(20); } } iosetup; template struct BIT0based { BIT0based(int n, const Abelian UNITY = 0) : n(n), UNITY(UNITY), dat(n, UNITY) {} void add(int idx, Abelian val) { while (idx < n) { dat[idx] += val; idx |= idx + 1; } } Abelian sum(int idx) const { Abelian res = UNITY; --idx; while (idx >= 0) { res += dat[idx]; idx = (idx & (idx + 1)) - 1; } return res; } Abelian sum(int left, int right) const { return left < right ? sum(right) - sum(left) : UNITY; } Abelian operator[](const int idx) const { return sum(idx, idx + 1); } int lower_bound(Abelian val) const { if (val <= UNITY) return 0; int res = 0, exponent = 1; while (exponent <= n) exponent <<= 1; for (int mask = exponent >> 1; mask > 0; mask >>= 1) { if (res + mask - 1 < n && dat[res + mask - 1] < val) { val -= dat[res + mask - 1]; res += mask; } } return res; } private: int n; const Abelian UNITY; vector dat; }; template ll inversion_number(const vector &a) { int n = a.size(); vector comp(a); sort(ALL(comp)); comp.erase(unique(ALL(comp)), comp.end()); BIT0based bit(comp.size()); ll res = 0; REP(i, n) { int idx = lower_bound(ALL(comp), a[i]) - comp.begin(); res += i - bit.sum(idx); bit.add(idx, 1); } return res; } int main() { int n; cin >> n; vector a(n), b(n); REP(i, n) cin >> a[i]; REP(i, n) cin >> b[i]; if (a[0] != b[0] || a[n - 1] != b[n - 1]) { cout << "-1\n"; return 0; } vector da(n - 1), db(n - 1); REP(i, n - 1) da[i] = a[i] ^ a[i + 1]; REP(i, n - 1) db[i] = b[i] ^ b[i + 1]; map> mp; for (int i = n - 1; i >= 0; --i) mp[db[i]].emplace_back(i); vector c(n - 1); REP(i, n - 1) { if (mp[da[i]].empty()) { cout << "-1\n"; return 0; } c[mp[da[i]].back()] = i; mp[da[i]].pop_back(); } cout << inversion_number(c) << '\n'; return 0; }