using AtCoder;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Text.RegularExpressions;
using System.Threading.Tasks;
using static System.Math;
public static class P
{
public static void Main()
{
int n = int.Parse(Console.ReadLine());
long[] r = new long[n];
long[] m = new long[n];
for (int i = 0; i < n; i++)
{
var xy = Console.ReadLine().Split().Select(int.Parse).ToArray();
r[i] = xy[0];
m[i] = xy[1];
}
var (rem, mod) = AtCoder.Math.CRT(r, m);
Console.WriteLine(mod % 1000000007);
}
}
namespace AtCoder
{
using AtCoder.Internal;
public static partial class Math
{
///
/// 同じ長さ n の配列 , について、x≡[i] (mod [i]),∀i∈{0,1,⋯,n−1} を解きます。
///
///
/// 制約: ||=||, 1≤[i], lcm(m[i]) が ll に収まる
/// 計算量: O(nloglcm())
///
/// 答えは(存在するならば) y,z(0≤y<z=lcm([i])) を用いて x≡y(mod z) の形で書ける。答えがない場合は(0,0)、n=0 の時は(0,1)、それ以外の場合は(y,z)。
public static (long, long) CRT(long[] r, long[] m)
{
Debug.Assert(r.Length == m.Length);
long r0 = 0, m0 = 1;
for (int i = 0; i < m.Length; i++)
{
Debug.Assert(1 <= m[i]);
long r1 = InternalMath.SafeMod(r[i], m[i]);
long m1 = m[i];
if (m0 < m1)
{
(r0, r1) = (r1, r0);
(m0, m1) = (m1, m0);
}
if (m0 % m1 == 0)
{
if (r0 % m1 != r1) return (0, 0);
continue;
}
var (g, im) = InternalMath.InvGCD(m0, m1);
long u1 = (m1 / g);
if ((r1 - r0) % g != 0) return (0, 0);
long x = (r1 - r0) / g % u1 * im % u1;
r0 += x * m0;
m0 *= u1;
if (r0 < 0) r0 += m0;
}
return (r0, m0);
}
}
}
namespace AtCoder.Internal
{
public static partial class InternalMath
{
///
/// g=gcd(a,b),xa=g(mod b) となるような 0≤x<b/g の(g, x)
///
///
/// 制約: 1≤
///
public static (long, long) InvGCD(long a, long b)
{
a = SafeMod(a, b);
if (a == 0) return (b, 0);
long s = b, t = a;
long m0 = 0, m1 = 1;
long u;
while (true)
{
if (t == 0)
{
if (m0 < 0) m0 += b / s;
return (s, m0);
}
u = s / t;
s -= t * u;
m0 -= m1 * u;
if (s == 0)
{
if (m1 < 0) m1 += b / t;
return (t, m1);
}
u = t / s;
t -= s * u;
m1 -= m0 * u;
}
}
public static long SafeMod(long x, long m)
{
x %= m;
if (x < 0) x += m;
return x;
}
}
}