#pragma GCC target ("avx") #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using ll = long long; using ld = long double; using H = pair; using P = pair; using vi = vector; #define all(a) (a).begin(),(a).end() #define fs first #define sc second #define xx first #define yy second.first #define zz second.second #define Q(i,j,k) mkp(i,mkp(j,k)) #define rng(i,s,n) for(ll i = (s) ; i < (n) ; i++) #define rep(i,n) rng(i, 0, (n)) #define mkp make_pair #define vec vector #define pb emplace_back #define siz(a) (int)(a).size() #define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end()) #define getidx(b,i) (lower_bound(all(b),(i))-(b).begin()) #define ssp(i,n) (i==(ll)(n)-1?"\n":" ") #define ctoi(c) (int)(c-'0') #define itoc(c) (char)(c+'0') #define cyes printf("Yes\n") #define cno printf("No\n") #define cdf(n) for(int quetimes_=(n);quetimes_>0;quetimes_--) #define gcj printf("Case #%lld: ",qq123_+1) #define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read() #define found(a,x) (a.find(x)!=a.end()) constexpr ll mod = (ll)1e9 + 7; constexpr ll Mod = 998244353; constexpr ld EPS = 1e-10; constexpr ll inf = (ll)3 * 1e18; constexpr int Inf = (ll)15 * 1e8; constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 }; templatebool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } templatebool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } ll read() { ll u, k = scanf("%lld", &u); return u; } string reads() { string s; cin >> s; return s; } H readh(short g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g == 1) u.fs--, u.sc--; if (g == 2) u.fs--; return u; } bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; } bool ina(int t, int l, int r) { return l <= t && t < r; } ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; } ll popcount(ll x) { int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++; return sum; } template class csum { vec v; public: csum(vec& a) :v(a) { build(); } csum() {} void init(vec& a) { v = a; build(); } void build() { for (int i = 1; i < v.size(); i++) v[i] += v[i - 1]; } //[l,r] T a(int l, int r) { if (r < l) return 0; return v[r] - (l == 0 ? 0 : v[l - 1]); } //[l,r) T b(int l, int r) { return a(l, r - 1); } T a(pairt) { return a(t.first, t.second); } T b(pairt) { return b(t.first, t.second); } }; class mint { public:ll v; mint(ll v = 0) { s(v % mod + mod); } constexpr static int mod = (ll)1e9 + 7; constexpr static int fn_ = (ll)2e6 + 5; static mint fact[fn_], comp[fn_]; mint pow(int x) const { mint b(v), c(1); while (x) { if (x & 1) c *= b; b *= b; x >>= 1; } return c; } inline mint& s(int vv) { v = vv < mod ? vv : vv - mod; return *this; } inline mint inv()const { return pow(mod - 2); } inline mint operator-()const { return mint() - *this; } inline mint& operator+=(const mint b) { return s(v + b.v); } inline mint& operator-=(const mint b) { return s(v + mod - b.v); } inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; } inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; } inline mint operator+(const mint b) const { return mint(v) += b; } inline mint operator-(const mint b) const { return mint(v) -= b; } inline mint operator*(const mint b) const { return mint(v) *= b; } inline mint operator/(const mint b) const { return mint(v) /= b; } friend ostream& operator<<(ostream& os, const mint& m) { return os << m.v; } friend istream& operator>>(istream& is, mint& m) { int x; is >> x; m = mint(x); return is; } bool operator<(const mint& r)const { return v < r.v; } bool operator>(const mint& r)const { return v > r.v; } bool operator<=(const mint& r)const { return v <= r.v; } bool operator>=(const mint& r)const { return v >= r.v; } bool operator==(const mint& r)const { return v == r.v; } bool operator!=(const mint& r)const { return v != r.v; } explicit operator bool()const { return v; } explicit operator int()const { return v; } mint comb(mint k) { if (k > * this) return mint(); if (!fact[0]) combinit(); if (v >= fn_) { if (k > * this - k) k = *this - k; mint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i); return tmp * comp[k.v]; } return fact[v] * comp[k.v] * comp[v - k.v]; }//nCk mint perm(mint k) { if (k > * this) return mint(); if (!fact[0]) combinit(); if (v >= fn_) { mint tmp(1); for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i); return tmp; } return fact[v] * comp[v - k.v]; }//nPk static void combinit() { fact[0] = 1; for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i); comp[fn_ - 1] = fact[fn_ - 1].inv(); for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1); } }; mint mint::fact[fn_], mint::comp[fn_]; //-------------------------------------------------------------- //-------------------------------------------------------------- int n, c; vece[2000]; mint dp[1010][8000]; bool flag[1010][8000]; mint solve(int x, int p, int d) { int k = d; if (k > 3 * n) k = c - d + 3 * n; if (flag[x][k]) return dp[x][k]; mint sum = 1; for (auto g : e[x]) { if (g == p) continue; mint res = 0; if (d == 0) { res+= solve(g, x, 0) * 2; } else { if (d + 3 > 3 * n && d + 3 < c - 3 * n) { res+= solve(g, x, 0); } else if (d + 3 <= c) { res+= solve(g, x, d + 3); } if (d - 3 > 3 * n && d - 3 < c - 3 * n) { res+= solve(g, x, 0); } else if (d - 3 >= 1) { res+= solve(g, x, d - 3); } } sum *= res; } flag[x][k] = 1; return dp[x][k] = sum; } mint solve2(int x, int p, int d) { if (flag[x][d]) return dp[x][d]; mint sum = 1; for (auto g : e[x]) { if (g == p) continue; mint res = 0; if (d + 3 <= c) res+= solve(g, x, d + 3); if (d - 3 > 0) res+= solve(g, x, d - 3); sum *= res; } flag[x][d] = 1; return dp[x][d] = sum; } signed main() { cin >> n >> c; rep(i, n - 1) { int u, v; cin >> u >> v; u--; v--; e[u].pb(v); e[v].pb(u); } if (6 * n >= c) { mint sum = 0; rng(i, 1, c + 1) { sum += solve(0, -1, i); } cout << sum << endl; } else { mint sum = 0; for (int i = 1; i <= 3 * n; i++) sum += solve(0, -1, i); for (int i = c - 3 * n + 1; i <= c; i++) sum += solve(0, -1, i); sum += solve(0, -1, 0) * (c - 6 * n); cout << sum << endl; } }