#pragma GCC target("avx") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include // #include // #include // #include // using namespace __gnu_pbds; // #include // namespace multiprecisioninteger = boost::multiprecision; // using cint=multiprecisioninteger::cpp_int; using namespace std; using ll=long long; #define double long double using datas=pair; using ddatas=pair; using tdata=pair; using vec=vector; using mat=vector; using pvec=vector; using pmat=vector; // using llset=tree,rb_tree_tag,tree_order_statistics_node_update>; #define For(i,a,b) for(i=a;i<(ll)b;++i) #define bFor(i,b,a) for(i=b,--i;i>=(ll)a;--i) #define rep(i,N) For(i,0,N) #define rep1(i,N) For(i,1,N) #define brep(i,N) bFor(i,N,0) #define brep1(i,N) bFor(i,N,1) #define all(v) (v).begin(),(v).end() #define allr(v) (v).rbegin(),(v).rend() #define vsort(v) sort(all(v)) #define vrsort(v) sort(allr(v)) #define endl "\n" #define eb emplace_back #define print(v) cout< inline bool chmax(T& a,T b){bool x=a inline bool chmin(T& a,T b){bool x=a>b;if(x)a=b;return x;} void startupcpp(){ cin.tie(0); ios::sync_with_stdio(false); cout<0){ if(n&1)res=res*a%mod; a=a*a%mod; n>>=1; } return res; } ll gcd(ll a,ll b){if(!b)return abs(a);return (a%b==0)?abs(b):gcd(b,a%b);} ll lcm(ll a,ll b){return a/gcd(a,b)*b;} ll countdigits(ll n){ ll ans=0; while(n){n/=10;ans++;} return ans; } ll sumdigits(ll n){ ll ans=0; while(n){ans+=n%10;n/=10;} return ans; } namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } } template struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector(n, e())) {} lazy_segtree(const std::vector& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, e()); lz = std::vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; std::vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; struct S{ double x,y; }; struct F{ double timex,timey,sumx,sumy; }; S op(S l,S r){ return l; } S e(){return S{0,0};} S mapping(F f,S x){ return S{x.x*f.timex-x.y*f.timey+f.sumx,x.x*f.timey+x.y*f.timex+f.sumy}; } F composition(F y,F x){ double a=x.timex,b=x.timey,c=x.sumx,d=x.sumy,e=y.timex,f=y.timey,g=y.sumx,h=y.sumy; return F{a*e-b*f,a*f+b*e,c*e-d*f+g,c*f+d*e+h}; } F id(){return F{1,0,0,0};} int main(){ startupcpp(); // int codeforces;cin>>codeforces;while(codeforces--){ ll i,j; ll N,K; cin>>N>>K; vector first(N+1); rep(i,N+1)first[i]=S{i,0}; lazy_segtree tree(first); vec nowlen(N,1),nowdeg(N,0); while(K--){ cin>>i; if(i==0){ cin>>i>>j; ll A=j+360-nowdeg[--i]; S res=tree.get(i); tree.apply(i+1,N+1,F{1,0,-res.x,-res.y}); tree.apply(i+1,N+1,F{cos(A*PI/180),sin(A*PI/180),res.x,res.y}); nowdeg[i]=j; }else if(i==1){ cin>>i>>j; S a=tree.get(i-1),b=tree.get(i); --i; tree.apply(i+1,N+1,F{1,0,(b.x-a.x)*(j-nowlen[i])/nowlen[i],(b.y-a.y)*(j-nowlen[i])/nowlen[i]}); nowlen[i]=j; }else{ cin>>i; S res=tree.get(i); print(res.x<<" "<