//shiawase wa yukkuri hajimaru. #define _CRT_SECURE_NO_WARNINGS #define _USE_MATH_DEFINES #define _SILENCE_ALL_CXX17_DEPRECATION_WARNINGS #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma comment (linker, "/STACK:526000000") #include "bits/stdc++.h" #ifndef ATCODER_MODINT_HPP #define ATCODER_MODINT_HPP 1 #ifndef ATCODER_INTERNAL_MATH_HPP #define ATCODER_INTERNAL_MATH_HPP 1 #include namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; int vs[3] = { 2,7,61 }; for (long long a : vs) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return { b, 0 }; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return { s, m0 }; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_MATH_HPP #ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP #define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1 #include #include #include namespace atcoder { namespace internal { #ifndef _MSC_VER template using is_signed_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using is_unsigned_int128 = typename std::conditional::value || std::is_same::value, std::true_type, std::false_type>::type; template using make_unsigned_int128 = typename std::conditional::value, __uint128_t, unsigned __int128>; template using is_integral = typename std::conditional::value || is_signed_int128::value || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using is_signed_int = typename std::conditional<(is_integral::value&& std::is_signed::value) || is_signed_int128::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional<(is_integral::value&& std::is_unsigned::value) || is_unsigned_int128::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional< is_signed_int128::value, make_unsigned_int128, typename std::conditional::value, std::make_unsigned, std::common_type>::type>::type; #else template using is_integral = typename std::is_integral; template using is_signed_int = typename std::conditional::value&& std::is_signed::value, std::true_type, std::false_type>::type; template using is_unsigned_int = typename std::conditional::value&& std::is_unsigned::value, std::true_type, std::false_type>::type; template using to_unsigned = typename std::conditional::value, std::make_unsigned, std::common_type>::type; #endif template using is_signed_int_t = std::enable_if_t::value>; template using is_unsigned_int_t = std::enable_if_t::value>; template using to_unsigned_t = typename to_unsigned::type; } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP #include #include #include #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template using is_modint = std::is_base_of; template using is_modint_t = std::enable_if_t::value>; } // namespace internal template * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template * = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template * = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++* this; return result; } mint operator--(int) { mint result = *this; --* this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime; }; template struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template * = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++* this; return result; } mint operator--(int) { mint result = *this; --* this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template internal::barrett dynamic_modint::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template using is_static_modint = std::is_base_of; template using is_static_modint_t = std::enable_if_t::value>; template struct is_dynamic_modint : public std::false_type {}; template struct is_dynamic_modint> : public std::true_type {}; template using is_dynamic_modint_t = std::enable_if_t::value>; } // namespace internal } // namespace atcoder #endif // ATCODER_MODINT_HPP #define int ll using namespace std; typedef string::const_iterator State; #define eps 1e-8L #define MAX_MOD 1000000007LL #define GYAKU 500000004LL #define MOD 998244353LL #define pb push_back #define mp make_pair typedef long long ll; typedef long double ld; #define REP(a,b) for(long long (a) = 0;(a) < (b);++(a)) #define ALL(x) (x).begin(),(x).end() unsigned long xor128() { static unsigned long x = 123456789, y = 362436069, z = 521288629, w = 88675123; unsigned long t = (x ^ (x << 11)); x = y; y = z; z = w; return (w = (w ^ (w >> 19)) ^ (t ^ (t >> 8))); }; typedef complex Point; typedef pair, complex> Line; typedef struct Circle { complex center; long double r; }Circle; long double dot(Point a, Point b) { return (a.real() * b.real() + a.imag() * b.imag()); } long double cross(Point a, Point b) { return (a.real() * b.imag() - a.imag() * b.real()); } long double Dist_Line_Point(Line a, Point b) { if (dot(a.second - a.first, b - a.first) < eps) return abs(b - a.first); if (dot(a.first - a.second, b - a.second) < eps) return abs(b - a.second); return abs(cross(a.second - a.first, b - a.first)) / abs(a.second - a.first); } int is_intersected_ls(Line a, Line b) { return (cross(a.second - a.first, b.first - a.first) * cross(a.second - a.first, b.second - a.first) < eps) && (cross(b.second - b.first, a.first - b.first) * cross(b.second - b.first, a.second - b.first) < eps); } Point intersection_l(Line a, Line b) { Point da = a.second - a.first; Point db = b.second - b.first; return a.first + da * cross(db, b.first - a.first) / cross(db, da); } long double Dist_Line_Line(Line a, Line b) { if (is_intersected_ls(a, b) == 1) { return 0; } return min({ Dist_Line_Point(a,b.first), Dist_Line_Point(a,b.second),Dist_Line_Point(b,a.first),Dist_Line_Point(b,a.second) }); } pair intersection_Circle_Circle(Circle a, Circle b) { long double dist = abs(a.center - b.center); assert(dist <= eps + a.r + b.r); assert(dist + eps >= abs(a.r - b.r)); Point target = b.center - a.center; long double pointer = target.real() * target.real() + target.imag() * target.imag(); long double aa = pointer + a.r * a.r - b.r * b.r; aa /= 2.0L; Point l{ (aa * target.real() + target.imag() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer, (aa * target.imag() - target.real() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer }; Point r{ (aa * target.real() - target.imag() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer, (aa * target.imag() + target.real() * sqrt(pointer * a.r * a.r - aa * aa)) / pointer }; r = r + a.center; l = l + a.center; return mp(l, r); } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } template A pows(A val, ll b) { assert(b >= 1); A ans = val; b--; while (b) { if (b % 2) { ans *= val; } val *= val; b /= 2LL; } return ans; } template class Compressor { public: bool is_zipped = false; map zipper; map unzipper; queue fetcher; Compressor() { is_zipped = false; zipper.clear(); unzipper.clear(); } void add(A now) { assert(is_zipped == false); zipper[now] = 1; fetcher.push(now); } void exec() { assert(is_zipped == false); int cnt = 0; for (auto i = zipper.begin(); i != zipper.end(); ++i) { i->second = cnt; unzipper[cnt] = i->first; cnt++; } is_zipped = true; } ll fetch() { assert(is_zipped == true); A hoge = fetcher.front(); fetcher.pop(); return zipper[hoge]; } ll zip(A now) { assert(is_zipped == true); assert(zipper.find(now) != zipper.end()); return zipper[now]; } A unzip(ll a) { assert(is_zipped == true); assert(a < unzipper.size()); return unzipper[a]; } ll next(A now) { auto x = zipper.upper_bound(now); if (x == zipper.end()) return zipper.size(); return (ll)((*x).second); } ll back(A now) { auto x = zipper.lower_bound(now); if (x == zipper.begin()) return -1; x--; return (ll)((*x).second); } }; template class Matrix { public: vector> data; Matrix(vector> a) :data(a) { } Matrix operator + (const Matrix obj) { vector> ans; assert(obj.data.size() == this->data.size()); assert(obj.data[0].size() == this->data[0].size()); REP(i, obj.data.size()) { ans.push_back(vector()); REP(q, obj.data[i].size()) { A hoge = obj.data[i][q] + (this->data[i][q]); ans.back().push_back(hoge); } } return Matrix(ans); } Matrix operator - (const Matrix obj) { vector> ans; assert(obj.data.size() == this->data.size()); assert(obj.data[0].size() == this->data[0].size()); REP(i, obj.data.size()) { ans.push_back(vector()); REP(q, obj.data[i].size()) { A hoge = this->data[i][q] - obj.data[i][q]; ans.back().push_back(hoge); } } return Matrix(ans); } Matrix operator * (const Matrix obj) { vector> ans; assert(obj.data.size() == this->data[0].size()); REP(i, this -> data.size()) { ans.push_back(vector()); REP(q, obj.data[0].size()) { A hoge = ((this->data[i][0]) * (obj.data[0][q])); for (int t = 1; t < obj.data.size(); ++t) { hoge += ((this->data[i][t]) * obj.data[t][q]); } ans.back().push_back(hoge); } } return Matrix(ans); } Matrix& operator *= (const Matrix obj) { *this = (*this * obj); return *this; } Matrix& operator += (const Matrix obj) { *this = (*this + obj); return *this; } Matrix& operator -= (const Matrix obj) { *this = (*this - obj); return *this; } }; struct Fraction { ll a; ll b; Fraction() :a(0LL), b(1LL) { } Fraction(ll c, ll d) { int hoge = gcd(llabs(c), llabs(d)); if (hoge != 0) { c /= hoge; d /= hoge; if (d < 0 or (d == 0 and c < 0)) { d *= -1; c *= -1; } } a = c; b = d; } bool operator <(Fraction rhs) const { if (a < 0 and rhs.a > 0) return 1; if (a > 0 and rhs.a < 0) return 0; return a * rhs.b < rhs.a* b; } bool operator ==(Fraction rhs) const { return a == rhs.a and b == rhs.b; } }; class Dice { public: vector vertexs; Dice(vector init) :vertexs(init) { } void RtoL() { for (int q = 1; q < 4; ++q) { swap(vertexs[q], vertexs[q + 1]); } } void LtoR() { for (int q = 3; q >= 1; --q) { swap(vertexs[q], vertexs[q + 1]); } } void UtoD() { swap(vertexs[5], vertexs[4]); swap(vertexs[2], vertexs[5]); swap(vertexs[0], vertexs[2]); } void DtoU() { swap(vertexs[0], vertexs[2]); swap(vertexs[2], vertexs[5]); swap(vertexs[5], vertexs[4]); } bool ReachAble(Dice now) { set hoge; queue next; next.push(now); hoge.insert(now); while (next.empty() == false) { Dice seeing = next.front(); next.pop(); if (seeing == *this) return true; seeing.RtoL(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } seeing.LtoR(); seeing.LtoR(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } seeing.RtoL(); seeing.UtoD(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } seeing.DtoU(); seeing.DtoU(); if (hoge.count(seeing) == 0) { hoge.insert(seeing); next.push(seeing); } } return false; } bool operator ==(const Dice& a) { for (int q = 0; q < 6; ++q) { if (a.vertexs[q] != (*this).vertexs[q]) { return false; } } return true; } bool operator <(const Dice& a) const { return (*this).vertexs < a.vertexs; } }; pair TwoDimDice(int center, int up) { int target = 1; while (true) { if (center != target && 7 - center != target && up != target && 7 - up != target) { break; } target++; } return mp(Dice(vector{up, target, center, 7 - target, 7 - center, 7 - up}), Dice(vector{up, 7 - target, center, target, 7 - center, 7 - up})); } tuple OneDimDice(int center) { int bo = min(center, 7 - center); pair goa; if (bo == 1) { goa = mp(2, 3); } else if (bo == 2) { goa = mp(1, 3); } else if (bo == 3) { goa = mp(1, 2); } tuple now = make_tuple(Dice(vector{goa.first, goa.second, center, 7 - goa.second, 7 - center, 7 - goa.first}), Dice(vector{goa.first, 7 - goa.second, center, goa.second, 7 - center, 7 - goa.first}), Dice(vector{7 - goa.first, goa.second, center, 7 - goa.second, 7 - center, goa.first}), Dice(vector{7 - goa.first, 7 - goa.second, center, goa.second, 7 - center, goa.first})); return now; } class HLDecomposition { public: vector> vertexs; vector depth; vector backs; vector connections; vector zip, unzip; HLDecomposition(int n) { vertexs = vector>(n, vector()); depth = vector(n); zip = vector(n); unzip = zip; } void add_edge(int a, int b) { vertexs[a].push_back(b); vertexs[b].push_back(a); } int depth_dfs(int now, int back) { depth[now] = 0; for (auto x : vertexs[now]) { if (x == back) continue; depth[now] = max(depth[now], 1 + depth_dfs(x, now)); } return depth[now]; } void dfs(int now, int backing) { zip[now] = backs.size(); unzip[backs.size()] = now; backs.push_back(backing); int now_max = -1; int itr = -1; for (auto x : vertexs[now]) { if (depth[x] > depth[now]) continue; if (now_max < depth[x]) { now_max = depth[x]; itr = x; } } if (itr == -1) return; connections.push_back(connections.back()); dfs(itr, backing); for (auto x : vertexs[now]) { if (depth[x] > depth[now]) continue; if (x == itr) continue; connections.push_back(zip[now]); dfs(x, backs.size()); } return; } void build() { depth_dfs(0, -1); connections.push_back(-1); dfs(0, -1); } vector> query(int a, int b) { a = zip[a]; b = zip[b]; vector> ans; while (backs[a] != backs[b]) { if (a < b) swap(a, b); ans.push_back(mp(backs[a], a + 1)); a = connections[a]; } if (a > b) swap(a, b); ans.push_back(mp(a, b + 1)); return ans; } int lca(int a, int b) { a = zip[a]; b = zip[b]; while (backs[a] != backs[b]) { if (a < b) swap(a, b); a = connections[a]; } return unzip[min(a, b)]; } }; void init() { iostream::sync_with_stdio(false); cout << fixed << setprecision(50); } using namespace atcoder; #define int ll void solve(){ int n; cin >> n; REP(i, n) { int a; cin >> a; cout << (a - 1) * a << endl; } } #undef int int main() { init(); int t = 1; REP(tea, t) { solve(); } }