/** * code generated by JHelper * More info: https://github.com/AlexeyDmitriev/JHelper * @author Gosu_Hiroo */ #include using namespace std; using ll = long long; using VI = vector; using VL = vector; using PII = pair; using PLL = pair; //#pragma GCC optimize("O3") //#pragma GCC target("avx2") //#pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //#pragma GCC optimize("Ofast") #define G(size_1) vector>(size_1, vector()) #define SZ(x) ((int)(x).size()) #define READ ({ll t;cin >> t;t;}) #define FOR(i, _begin, _end) for (__typeof(_end) end = _end, begin = _begin, i = (begin) - ((begin) > (end)); i != (end) - ((begin) > (end)); i += 1 - 2 * ((begin) > (end))) #define REP(i, end) for (__typeof(end) i = 0, _len = (end); i < (_len); i += 1) #define ALL(x) (x).begin(),(x).end() #define RALL(x) (x).rbegin(),(x).rend() #define F first #define S second #define y0 y3487465 #define y1 y8687969 #define j0 j1347829 #define j1 j234892 #define BIT(n) (1LL<<(n)) #define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() ); #define EB emplace_back #define PB push_back #define fcout cout << fixed << setprecision(12) #define fcerr cerr << fixed << setprecision(12) #define print(x) cout << (x) << '\n' #define printE(x) cout << (x) << '\n'; #define fprint(x) cout << fixed << setprecision(12) << (x) << '\n'; # define BYE(a) do { cout << (a) << endl; return ; } while (false) #ifdef DEBUG #define DBG(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator _it(_ss); _err(cerr,_it, args); } #define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator _it(_ss); _err(std::cerr,_it, args); } #else #define DBG(args...) {}; #define ERR(args...) {}; #endif void _err(std::ostream& cerr,istream_iterator it) {cerr << endl;} template void _err(std::ostream& cerr, istream_iterator it, T a, Args... args) { cerr << *it << " = " << a << " "; _err(cerr,++it, args...); } const double PI = 2 * acos(.0); const int INF = 0x3f3f3f3f; templatebool chmax(T &a, const T &b) { if (abool chmin(T &a, const T &b) { if (bT ceil(T a, T b) {return (a+b-1)/b;} template istream& operator >> (istream& is, pair& V) { is >> V.F >> V.S; return is; } template istream& operator >> (istream& is, vector& V) { for(auto&& ele : V)is >> ele; return is; } template ostream& operator << (ostream& os, const vector V) { os << "["; int cnt = 0; T curr; if(!V.empty()){ for (int i = 0; i < V.size() - 1; ++i) { if(V[i] == curr)cnt ++; else cnt = 0; if(cnt == 4)os << "... "; if(cnt < 4) os << i << ":" << V[i] << " "; curr = V[i]; } os << V.size() - 1 << ":" << V.back(); } os << "]\n"; return os; } template ostream& operator << (ostream& os, const pair P) { os << "("; os << P.first << "," << P.second; os << ")"; return os; } template ostream& operator << (ostream& os, const set V) { os << "{"; if(!V.empty()){ auto it = V.begin(); for (int i = 0; i < V.size() -1; ++i) { os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template ostream& operator << (ostream& os, const unordered_set V) { os << "{"; if(!V.empty()){ auto it = V.begin(); for (int i = 0; i < V.size() -1; ++i) { os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template ostream& operator << (ostream& os, const multiset V) { os << "{"; if(!V.empty()){ auto it = V.begin(); for (int i = 0; i < V.size() -1; ++i) { os << *it << " "; it++; } os << *it; } os << "}"; return os; } template ostream& operator << (ostream& os, const map V) { os << "{"; if(!V.empty()){ auto it = V.begin(); for (int i = 0; i < V.size() -1; ++i) { os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template ostream& operator << (ostream& os, const unordered_map V) { os << "{"; if(!V.empty()){ auto it = V.begin(); for (int i = 0; i < V.size() -1; ++i) { os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template ostream& operator << (ostream& os, const deque V) { os << "["; if (!V.empty()) { for (int i = 0; i < V.size() - 1; ++i) { os << V[i] << "->"; } if (!V.empty())os << V.back(); } os << "]\n"; return os; }; template ostream& operator << (ostream& os, const priority_queue V) { priority_queue _V = V; os << "["; if(!_V.empty()){ while(_V.size() > 1){ os << _V.top() << "->"; _V.pop(); } os << _V.top(); } os << "]\n"; return os; }; template struct y_combinator { F f; // the lambda will be stored here // a forwarding operator(): template decltype(auto) operator()(Args&&... args) const { // we pass ourselves to f, then the arguments. // the lambda should take the first argument as `auto&& recurse` or similar. return f(*this, std::forward(args)...); } }; // helper function that deduces the type of the lambda: template y_combinator> recursive(F&& f){ return {std::forward(f)}; } struct hash_pair { template size_t operator()(const pair& p) const { auto hash1 = hash{}(p.first); auto hash2 = hash{}(p.second); return hash1 ^ hash2; } }; template std::vector multi_vector(int n, U v) { return std::vector(n, v); } template auto multi_vector(int n, Args... args) { auto val = multi_vector(std::forward(args)...); return std::vector(n, std::move(val)); } #ifndef ATCODER_LAZYSEGTREE_HPP #define ATCODER_LAZYSEGTREE_HPP 1 #include #ifndef ATCODER_INTERNAL_BITOP_HPP #define ATCODER_INTERNAL_BITOP_HPP 1 #ifdef _MSC_VER #include #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_BITOP_HPP #include #include #include namespace atcoder { template struct lazy_segtree { public: lazy_segtree() : lazy_segtree(0) {} lazy_segtree(int n) : lazy_segtree(std::vector(n, e())) {} lazy_segtree(const std::vector& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector(2 * size, e()); lz = std::vector(size, id()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); if (l == r) return e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push(r >> i); } S sml = e(), smr = e(); while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, F f) { assert(0 <= p && p < _n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, F f) { assert(0 <= l && l <= r && r <= _n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template int max_right(int l) { return max_right(l, [](S x) { return g(x); }); } template int max_right(int l, G g) { assert(0 <= l && l <= _n); assert(g(e())); if (l == _n) return _n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!g(op(sm, d[l]))) { while (l < size) { push(l); l = (2 * l); if (g(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template int min_left(int r) { return min_left(r, [](S x) { return g(x); }); } template int min_left(int r, G g) { assert(0 <= r && r <= _n); assert(g(e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!g(op(d[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (g(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector d; std::vector lz; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } void all_apply(int k, F f) { d[k] = mapping(f, d[k]); if (k < size) lz[k] = composition(f, lz[k]); } void push(int k) { all_apply(2 * k, lz[k]); all_apply(2 * k + 1, lz[k]); lz[k] = id(); } }; } // namespace atcoder #endif // ATCODER_LAZYSEGTREE_HPP using namespace atcoder; namespace arg{ using S = ll; using F = ll; S op(S s1, S s2){ return min(s1, s2); } S unit(){ return 1e18; } S mapping(F f, S s){ return f+s; } F composition(F f1, F f2){ return f1+f2; } F identity(){ return 0; } } using lst = lazy_segtree; class No1234RMQ { public: void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr) { int N;cin >> N; VL a(N);cin >> a; lst seg(a); int Q;cin >> Q; REP(i,Q){ int k,l,r,c;cin >> k >> l >> r >> c;l--; if(k==1){ seg.apply(l,r,c); }else{ print(seg.prod(l,r)); } } } }; #undef int int main() { No1234RMQ solver; std::istream& in(std::cin); std::ostream& out(std::cout); std::ostringstream err; in.tie(0); ios::sync_with_stdio(0); solver.solve(in, out,err); return 0; }