#![allow(unused_imports, unused_macros)] use kyoproio::*; use std::{ collections::*, io::{self, prelude::*}, iter, mem::{replace, swap}, }; fn main() -> io::Result<()> { std::thread::Builder::new() .stack_size(64 * 1024 * 1024) .spawn(|| { let stdin = io::stdin(); let stdout = io::stdout(); run(KInput::new(stdin.lock()), io::BufWriter::new(stdout.lock())) })? .join() .unwrap() } fn run(mut kin: I, mut out: O) -> io::Result<()> { macro_rules! output { ($($args:expr),+) => { write!(&mut out, $($args),+)?; }; } macro_rules! outputln { ($($args:expr),+) => { output!($($args),+); outputln!(); }; () => { output!("\n"); if cfg!(debug_assertions) { out.flush()?; } } } let n: usize = kin.input(); let a: Vec = kin.seq(n); let mut lst = LazySegTree::new(n, |a: &Add, m: &Min| Min(a.0 + m.0)); for i in 0..n { lst.set(i, Min(a[i])); } // eprintln!("{:?}", &lst.ss); // eprintln!("{:?}", &lst.fs); let q: usize = kin.input(); for (k, l, r, c) in kin.iter::<(i32, usize, usize, i64)>().take(q) { if k == 1 { lst.apply(l - 1, r, &Add(c)); // eprintln!("{:?}", &lst.ss); // eprintln!("{:?}", &lst.fs); } else { let ans = lst.prod(l - 1, r); outputln!("{}", ans.0); } } Ok(()) } #[derive(Debug)] struct Add(i64); impl Monoid for Add { fn id() -> Self { Self(0) } fn op(&self, other: &Self) -> Self { Self(self.0 + other.0) } } #[derive(Debug)] struct Min(i64); impl Monoid for Min { fn id() -> Self { Min(i64::max_value() / 2) } fn op(&self, other: &Self) -> Self { Self(self.0.min(other.0)) } } pub trait Monoid { fn id() -> Self; fn op(&self, other: &Self) -> Self; } pub struct LazySegTree { ss: Box<[S]>, fs: Box<[F]>, map: Map, } impl S> LazySegTree { pub fn new(n: usize, map: Map) -> Self { use std::iter::repeat_with; let len = 2 * n.next_power_of_two(); Self { ss: repeat_with(S::id).take(len).collect(), fs: repeat_with(F::id).take(len).collect(), map, } } fn len(&self) -> usize { self.ss.len() / 2 } fn propagate(&mut self, i: usize) { let h = 8 * std::mem::size_of::() as u32 - i.leading_zeros(); for k in (1..h).rev() { let p = i >> k; let l = 2 * p; let r = 2 * p + 1; self.ss[l] = (self.map)(&self.fs[p], &self.ss[l]); self.ss[r] = (self.map)(&self.fs[p], &self.ss[r]); self.fs[l] = self.fs[p].op(&self.fs[l]); self.fs[r] = self.fs[p].op(&self.fs[r]); self.fs[p] = F::id(); } } pub fn prod(&mut self, l: usize, r: usize) -> S { assert!(l <= r); assert!(r <= self.len()); let mut l = l + self.len(); let mut r = r + self.len(); let ln = l >> l.trailing_zeros(); let rn = r >> r.trailing_zeros(); self.propagate(ln); self.propagate(rn - 1); let mut lv = S::id(); let mut rv = S::id(); while l < r { if l % 2 == 1 { lv = lv.op(&self.ss[l]); l += 1; } if r % 2 == 1 { r -= 1; rv = rv.op(&self.ss[r]); } l /= 2; r /= 2; } lv.op(&rv) } pub fn set(&mut self, i: usize, v: S) { let mut i = i + self.len(); self.propagate(i); self.ss[i] = v; while i > 0 { i /= 2; self.ss[i] = self.ss[2 * i].op(&self.ss[2 * i + 1]); } } pub fn apply(&mut self, l: usize, r: usize, f: &F) { assert!(l <= r); assert!(r <= self.len()); let mut li = l + self.len(); let mut ri = r + self.len(); let ln = li >> li.trailing_zeros(); let rn = ri >> ri.trailing_zeros(); self.propagate(ln); self.propagate(rn - 1); while li < ri { if li % 2 == 1 { self.fs[li] = f.op(&self.fs[li]); self.ss[li] = (self.map)(f, &self.ss[li]); li += 1; } if ri % 2 == 1 { ri -= 1; self.fs[ri] = f.op(&self.fs[ri]); self.ss[ri] = (self.map)(f, &self.ss[ri]); } li /= 2; ri /= 2; } let mut l = (l + self.len()) / 2; let mut r = (r + self.len() - 1) / 2; while l > 0 { if l < ln { self.ss[l] = self.ss[2 * l].op(&self.ss[2 * l + 1]); } if l != r && r < rn - 1 { self.ss[r] = self.ss[2 * r].op(&self.ss[2 * r + 1]); } l /= 2; r /= 2; } } } // ----------------------------------------------------------------------------- pub mod kyoproio { use std::io::prelude::*; pub trait Input { fn str(&mut self) -> &str; fn input(&mut self) -> T { T::input(self) } fn iter(&mut self) -> Iter { Iter(self, std::marker::PhantomData) } fn seq>(&mut self, n: usize) -> B { self.iter().take(n).collect() } } pub struct KInput { src: R, buf: String, pos: usize, } impl KInput { pub fn new(src: R) -> Self { Self { src, buf: String::with_capacity(1024), pos: 0, } } } impl Input for KInput { fn str(&mut self) -> &str { loop { if self.pos >= self.buf.len() { self.pos = 0; self.buf.clear(); if self.src.read_line(&mut self.buf).expect("io error") == 0 { return &self.buf; } } let range = self.pos ..self.buf[self.pos..] .find(|c: char| c.is_ascii_whitespace()) .map(|i| i + self.pos) .unwrap_or_else(|| self.buf.len()); self.pos = range.end + 1; if range.end > range.start { return &self.buf[range]; } } } } pub struct Iter<'a, T, I: ?Sized>(&'a mut I, std::marker::PhantomData<*const T>); impl<'a, T: InputParse, I: Input + ?Sized> Iterator for Iter<'a, T, I> { type Item = T; fn next(&mut self) -> Option { Some(self.0.input()) } } pub trait InputParse: Sized { fn input(src: &mut I) -> Self; } impl InputParse for Vec { fn input(src: &mut I) -> Self { src.str().as_bytes().to_owned() } } macro_rules! from_str_impl { { $($T:ty)* } => { $(impl InputParse for $T { fn input(src: &mut I) -> Self { src.str().parse::<$T>().expect("parse error") } })* } } from_str_impl! { String char bool f32 f64 isize i8 i16 i32 i64 i128 usize u8 u16 u32 u64 u128 } macro_rules! tuple_impl { ($H:ident $($T:ident)*) => { impl<$H: InputParse, $($T: InputParse),*> InputParse for ($H, $($T),*) { fn input(src: &mut I) -> Self { ($H::input(src), $($T::input(src)),*) } } tuple_impl!($($T)*); }; () => {} } tuple_impl!(A B C D E F G); #[macro_export] macro_rules! kdbg { ($($v:expr),*) => { if cfg!(debug_assertions) { dbg!($($v),*) } else { ($($v),*) } } } }