#[allow(unused_imports)] use {std::cmp::*, std::collections::*, std::io::Write, std::ops::*}; #[allow(unused_macros)] macro_rules! dbg { ($($e:expr),*) => { #[cfg(debug_assertions)] $({ let (e, mut err) = (stringify!($e), std::io::stderr()); writeln!(err, "{} = {:?}", e, $e).unwrap() })* }; } pub fn readln() -> String { let mut line = String::new(); ::std::io::stdin() .read_line(&mut line) .unwrap_or_else(|e| panic!("{}", e)); line } macro_rules !read {($($t :tt ) ,*;$n :expr ) =>{{let stdin =::std ::io ::stdin () ;let ret =::std ::io ::BufRead ::lines (stdin .lock () ) .take ($n ) .map (|line |{let line =line .unwrap () ;let mut it =line .split_whitespace () ;_read !(it ;$($t ) ,*) } ) .collect ::>() ;ret } } ;($($t :tt ) ,*) =>{{let line =readln () ;let mut it =line .split_whitespace () ;_read !(it ;$($t ) ,*) } } ;} macro_rules !_read {($it :ident ;[char ] ) =>{_read !($it ;String ) .chars () .collect ::>() } ;($it :ident ;[u8 ] ) =>{Vec ::from (_read !($it ;String ) .into_bytes () ) } ;($it :ident ;usize1 ) =>{$it .next () .unwrap_or_else (||panic !("input mismatch" ) ) .parse ::() .unwrap_or_else (|e |panic !("{}" ,e ) ) -1 } ;($it :ident ;[usize1 ] ) =>{$it .map (|s |s .parse ::() .unwrap_or_else (|e |panic !("{}" ,e ) ) -1 ) .collect ::>() } ;($it :ident ;[$t :ty ] ) =>{$it .map (|s |s .parse ::<$t >() .unwrap_or_else (|e |panic !("{}" ,e ) ) ) .collect ::>() } ;($it :ident ;$t :ty ) =>{$it .next () .unwrap_or_else (||panic !("input mismatch" ) ) .parse ::<$t >() .unwrap_or_else (|e |panic !("{}" ,e ) ) } ;($it :ident ;$($t :tt ) ,+) =>{($(_read !($it ;$t ) ) ,*) } ;} #[allow(unused_macros)] macro_rules !max {($a :expr $(,) *) =>{{$a } } ;($a :expr ,$b :expr $(,) *) =>{{std ::cmp ::max ($a ,$b ) } } ;($a :expr ,$($rest :expr ) ,+$(,) *) =>{{std ::cmp ::max ($a ,max !($($rest ) ,+) ) } } ;} #[allow(unused_macros)] macro_rules !chmax {($base :expr ,$($cmps :expr ) ,+$(,) *) =>{{let cmp_max =max !($($cmps ) ,+) ;if $base ::from_vec(&a); for _ in 0..q { let (k, l, r, c) = read!(usize, usize1, usize1, i64); if k == 1 { seg.update(l..=r, &c); } else { println!("{}", seg.prod(l..=r)); } } } const INF: i64 = 1_000_000_000_000_000_000; struct Node; impl ME for Node { type M = i64; type E = i64; fn id_m() -> Self::M { INF } fn id_e() -> Self::E { 0 } fn f(a: &Self::M, b: &Self::M) -> Self::M { min(*a, *b) } fn g(a: &Self::M, b: &Self::E) -> Self::M { a + b } fn h(a: &Self::E, b: &Self::E) -> Self::E { a + b } fn p(a: &Self::E, _k: usize) -> Self::E { *a } } trait ME { type M: Clone; type E: Clone + PartialEq; fn id_m() -> Self::M; fn id_e() -> Self::E; fn id() -> (Self::M, Self::E) { (Self::id_m(), Self::id_e()) } fn f(a: &Self::M, b: &Self::M) -> Self::M; fn g(a: &Self::M, b: &Self::E) -> Self::M; fn h(a: &Self::E, b: &Self::E) -> Self::E; fn p(a: &Self::E, k: usize) -> Self::E; } struct LazySegmentTree { width: usize, dat: Vec<(T::M, T::E)>, } #[allow(dead_code)] impl LazySegmentTree { fn new(n: usize) -> Self { let width = n.next_power_of_two(); Self { width, dat: vec![T::id(); (width << 1) - 1], } } fn from_vec(a: &[T::M]) -> Self { let width = a.len().next_power_of_two(); let mut dat = vec![T::id(); (width << 1) - 1]; for i in 0..a.len() { dat[i + width - 1].0 = a[i].clone(); } for i in (0..width - 1).rev() { dat[i].0 = T::f(&dat[(i << 1) + 1].0, &dat[(i << 1) + 2].0); } Self { width, dat } } fn __eval(&mut self, now: usize, k: usize) { let e = T::p(&self.dat[now].1, k); self.dat[now].0 = T::g(&self.dat[now].0, &e); if k > 1 { self.dat[(now << 1) + 1].1 = T::h(&self.dat[(now << 1) + 1].1, &self.dat[now].1); self.dat[(now << 1) + 2].1 = T::h(&self.dat[(now << 1) + 2].1, &self.dat[now].1); } self.dat[now].1 = T::id_e(); } fn __update(&mut self, x: &T::E, now: usize, lc: usize, rc: usize, l: usize, r: usize) { self.__eval(now, rc - lc); if l <= lc && rc <= r { self.dat[now].1 = T::h(&self.dat[now].1, x); self.__eval(now, rc - lc); } else if l < rc && lc < r { self.__update(x, (now << 1) + 1, lc, (lc + rc) / 2, l, r); self.__update(x, (now << 1) + 2, (lc + rc) / 2, rc, l, r); self.dat[now].0 = T::f(&self.dat[(now << 1) + 1].0, &self.dat[(now << 1) + 2].0); } } fn update(&mut self, range: R, x: &T::E) where R: std::ops::RangeBounds, { let l = match range.start_bound() { std::ops::Bound::Included(&a) => a, _ => 0, }; let r = match range.end_bound() { std::ops::Bound::Excluded(&a) => a, std::ops::Bound::Included(&a) => a + 1, _ => self.width, }; self.__update(x, 0, 0, self.width, l, r); } fn __prod(&mut self, now: usize, lc: usize, rc: usize, l: usize, r: usize) -> T::M { self.__eval(now, rc - lc); if rc <= l || r <= lc { T::id_m() } else if l <= lc && rc <= r { self.dat[now].0.clone() } else { T::f( &self.__prod((now << 1) + 1, lc, (lc + rc) >> 1, l, r), &self.__prod((now << 1) + 2, (lc + rc) >> 1, rc, l, r), ) } } fn prod(&mut self, range: R) -> T::M where R: std::ops::RangeBounds, { let l = match range.start_bound() { std::ops::Bound::Included(&a) => a, _ => 0, }; let r = match range.end_bound() { std::ops::Bound::Excluded(&a) => a, std::ops::Bound::Included(&a) => a + 1, _ => self.width, }; self.__prod(0, 0, self.width, l, r) } }