#[allow(unused_imports)] use {std::cmp::*, std::collections::*, std::io::Write, std::ops::*}; #[allow(unused_macros)] macro_rules! dbg { ($($e:expr),*) => { #[cfg(debug_assertions)] $({ let (e, mut err) = (stringify!($e), std::io::stderr()); writeln!(err, "{} = {:?}", e, $e).unwrap() })* }; } pub fn readln() -> String { let mut line = String::new(); ::std::io::stdin() .read_line(&mut line) .unwrap_or_else(|e| panic!("{}", e)); line } macro_rules !read {($($t :tt ) ,*;$n :expr ) =>{{let stdin =::std ::io ::stdin () ;let ret =::std ::io ::BufRead ::lines (stdin .lock () ) .take ($n ) .map (|line |{let line =line .unwrap () ;let mut it =line .split_whitespace () ;_read !(it ;$($t ) ,*) } ) .collect ::>() ;ret } } ;($($t :tt ) ,*) =>{{let line =readln () ;let mut it =line .split_whitespace () ;_read !(it ;$($t ) ,*) } } ;} macro_rules !_read {($it :ident ;[char ] ) =>{_read !($it ;String ) .chars () .collect ::>() } ;($it :ident ;[u8 ] ) =>{Vec ::from (_read !($it ;String ) .into_bytes () ) } ;($it :ident ;usize1 ) =>{$it .next () .unwrap_or_else (||panic !("input mismatch" ) ) .parse ::() .unwrap_or_else (|e |panic !("{}" ,e ) ) -1 } ;($it :ident ;[usize1 ] ) =>{$it .map (|s |s .parse ::() .unwrap_or_else (|e |panic !("{}" ,e ) ) -1 ) .collect ::>() } ;($it :ident ;[$t :ty ] ) =>{$it .map (|s |s .parse ::<$t >() .unwrap_or_else (|e |panic !("{}" ,e ) ) ) .collect ::>() } ;($it :ident ;$t :ty ) =>{$it .next () .unwrap_or_else (||panic !("input mismatch" ) ) .parse ::<$t >() .unwrap_or_else (|e |panic !("{}" ,e ) ) } ;($it :ident ;$($t :tt ) ,+) =>{($(_read !($it ;$t ) ) ,*) } ;} #[allow(unused_macros)] macro_rules !max {($a :expr $(,) *) =>{{$a } } ;($a :expr ,$b :expr $(,) *) =>{{std ::cmp ::max ($a ,$b ) } } ;($a :expr ,$($rest :expr ) ,+$(,) *) =>{{std ::cmp ::max ($a ,max !($($rest ) ,+) ) } } ;} #[allow(unused_macros)] macro_rules !chmax {($base :expr ,$($cmps :expr ) ,+$(,) *) =>{{let cmp_max =max !($($cmps ) ,+) ;if $base ::new(100001, 0); for i in 0..n { bit.add(a[i], 1); } for i in 0..n { let a = a[i]; for j in 0.. { if (j + 1) * a <= 100000 { ans -= j * a * bit.sum(j * a..(j + 1) * a); } else if j * a <= 100000 { ans -= j * a * bit.sum(j * a..); } else { break; } } } println!("{}", ans); } struct FenwickTree { n: usize, tree: Vec, e: T, } #[allow(dead_code)] impl FenwickTree { fn new(n: usize, e: T) -> Self { FenwickTree { n, tree: vec![e.clone(); n], e, } } /// A[i] += w fn add(&mut self, mut idx: usize, w: U) where T: std::ops::AddAssign, { idx += 1; while idx <= self.n { self.tree[idx - 1] += w.clone(); idx += idx & idx.wrapping_neg(); } } /// return A[0] + ... + A[idx-1] fn accum(&self, mut idx: usize) -> T { let mut sum = self.e.clone(); while idx > 0 { sum += self.tree[idx - 1].clone(); idx &= idx - 1; } sum } /// return ∑ d[i] for i in R fn sum(&self, interval: R) -> T where T: std::ops::Sub, R: std::ops::RangeBounds, { let r = match interval.end_bound() { std::ops::Bound::Excluded(&a) => a, std::ops::Bound::Included(&a) => a + 1, _ => self.n, }; match interval.start_bound() { std::ops::Bound::Included(&l) => self.accum(r) - self.accum(l), _ => self.accum(r), } } }