{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UnboxedTuples #-} {- base -} import Control.Arrow import Control.Monad import Control.Monad.ST import Data.Bits import Data.Bool import Data.Char import Data.Coerce import Data.Function import Data.Functor.Identity import Data.IORef import Data.Ix import Data.Monoid import Data.Ord import Data.Ratio import Data.Semigroup import Data.STRef import Data.Void import Data.Word import GHC.Exts import Unsafe.Coerce {- array -} import qualified Data.Array as Arr import qualified Data.Array.IO as ArrIO import qualified Data.Array.MArray as ArrMA import qualified Data.Array.ST as ArrST import qualified Data.Array.Unboxed as ArrU {- bytestring -} import qualified Data.ByteString as BS import qualified Data.ByteString.Builder as BSB import qualified Data.ByteString.Builder.Extra as BSBE import qualified Data.ByteString.Builder.Prim as BSBP import qualified Data.ByteString.Char8 as BSC8 import qualified Data.ByteString.Lazy as BSL import qualified Data.ByteString.Lazy.Char8 as BSLC8 import qualified Data.ByteString.Short as BSS import qualified Data.ByteString.Unsafe as BSU {- integer-gmp -} import qualified GHC.Integer.GMP.Internals as GMP import qualified GHC.Integer.Logarithms.Internals as Log {- vector -} import qualified Data.Vector as V import qualified Data.Vector.Fusion.Stream.Monadic as VFSM import qualified Data.Vector.Generic as VG import qualified Data.Vector.Generic.Mutable as VGM import qualified Data.Vector.Mutable as VM import qualified Data.Vector.Primitive as VP import qualified Data.Vector.Primitive.Mutable as VPM import qualified Data.Vector.Storable as VS import qualified Data.Vector.Storable.Mutable as VSM import qualified Data.Vector.Unboxed as VU import qualified Data.Vector.Unboxed.Mutable as VUM ------------------------------------------------------------------------------- stream :: Monad m => Int -> Int -> VFSM.Stream m Int stream !l !r = VFSM.Stream step l where step x | x < r = return $ VFSM.Yield x (x + 1) | otherwise = return $ VFSM.Done {-# INLINE [0] step #-} {-# INLINE [1] stream #-} rep :: Monad m => Int -> (Int -> m ()) -> m () rep n = flip VFSM.mapM_ (stream 0 n) {-# INLINE rep #-} fi :: Int -> Integer fi = fromIntegral {-# INLINE fi #-} fI :: Integer -> Int fI = fromInteger {-# INLINE fI #-} powModInt :: Int -> Int -> Int -> Int powModInt a b c = fI $ GMP.powModInteger (fi a) (fi b) (fi c) {-# INLINE powModInt #-} (.>>.) :: Bits i => i -> Int -> i (.>>.) = unsafeShiftR {-# INLINE (.>>.) #-} (.<<.) :: Bits i => i -> Int -> i (.<<.) = unsafeShiftL {-# INLINE (.<<.) #-} ------------------------------------------------------------------------------- type Parser a = BSC8.ByteString -> Maybe (a, BSC8.ByteString) parseInt :: Parser Int parseInt = fmap (second BSC8.tail) . BSC8.readInt parseChar :: [Char] -> VU.Vector Char parseChar = VU.fromList parse1 :: IO Int parse1 = readLn parse2 :: IO (Int, Int) parse2 = (\vec -> (vec VU.! 0, vec VU.! 1)) . VU.unfoldrN 2 parseInt <$> BSC8.getLine parse3 :: IO (Int, Int, Int) parse3 = (\vec -> (vec VU.! 0, vec VU.! 1, vec VU.! 2)) . VU.unfoldrN 3 parseInt <$> BSC8.getLine parse4 :: IO (Int, Int, Int, Int) parse4 = (\vec -> (vec VU.! 0, vec VU.! 1, vec VU.! 2, vec VU.! 3)) . VU.unfoldrN 4 parseInt <$> BSC8.getLine parseM :: Int -> IO (VU.Vector Int) parseM m = VU.unfoldrN m parseInt <$> BSC8.getLine parseN :: Int -> IO (VU.Vector Int) parseN n = VU.replicateM n parse1 parseNM :: Int -> Int -> IO (V.Vector (VU.Vector Int)) parseNM n m = V.replicateM n $ VU.unfoldrN m parseInt <$> BSC8.getLine parseANBN :: Int -> IO (VU.Vector Int, VU.Vector Int) parseANBN n = do vectup <- VU.replicateM n $ (\vec -> (vec VU.! 0, vec VU.! 1)) . VU.unfoldr (BSC8.readInt . BSC8.dropWhile isSpace) <$> BSC8.getLine return $ VU.unzip vectup parseANBNCN :: Int -> IO (VU.Vector Int, VU.Vector Int, VU.Vector Int) parseANBNCN n = do vectup <- VU.replicateM n $ (\vec -> (vec VU.! 0, vec VU.! 1, vec VU.! 2)) . VU.unfoldr (BSC8.readInt . BSC8.dropWhile isSpace) <$> BSC8.getLine return $ VU.unzip3 vectup ------------------------------------------------------------------------------- isPrime :: Int -> Bool isPrime k | k <= 3 = k == 2 || k == 3 | even k = False | otherwise = millerRabin k where millerRabin :: Int -> Bool millerRabin n | n < 2047 = loop [2] | n < 1373653 = loop [2,3] | n < 9080191 = loop [31,73] | n < 25326001 = loop [2,3,5] | n < 4759123141 = loop [2,7,61] | n < 1122004669633 = loop [2,13,23,1662803] | n < 2152302898747 = loop [2,3,5,7,11] | n < 3474749660383 = loop [2,3,5,7,11,13] | n < 341550071728321 = loop [2,3,5,7,11,13,17] | otherwise = loop [2,325,9375,28178,450775,9780504,1795265022] where !m = n - 1 !s = countTrailingZeros m !d = m .>>. s check1 :: Int -> Bool check1 a = powModInt a d n /= 1 {-# INLINE check1 #-} check2 :: Int -> Int -> Bool check2 a i = (powModInt a (d * (1 .<<. i)) n) /= m {-# INLINE check2 #-} loop [] = True loop (a:as) | check1 a && allok = False | otherwise = loop as where allok = all (check2 a) [0..(s - 1)] ------------------------------------------------------------------------------- main :: IO () main = do query <- parse1 rep query $ \_ -> do (a, p) <- parse2 if isPrime p then do print $ bool 0 1 (gcd a p == 1) else print (-1)